All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Global bifurcation analysis of a rational Holling system
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 537-545Views (last year): 11.In this paper, we consider a quartic family of planar vector fields corresponding to a rational Holling system which models the dynamics of the populations of predators and their prey in a given ecological or biomedical system and which is a variation on the classical Lotka–Volterra system. For the latter system, the change of the prey density per unit of time per predator called the response function is proportional to the prey density. This means that there is no saturation of the predator when the amount of available prey is large. However, it is more realistic to consider a nonlinear and bounded response function, and in fact different response functions have been used in the literature to model the predator response. After algebraic transformations, the rational Holling system can be written in the form of a quartic dynamical system. To investigate the character and distribution of the singular points in the phase plane of the quartic system, we use our method the sense of which is to obtain the simplest (well-known) system by vanishing some parameters (usually field rotation parameters) of the original system and then to input these parameters successively one by one studying the dynamics of the singular points (both finite and infinite) in the phase plane. Using the obtained information on singular points and applying our geometric approach to the qualitative analysis, we study the limit cycle bifurcations of the quartic system. To control all of the limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary to know the properties and combine the effects of all of the rotation parameters. It can be done by means of the Wintner–Perko termination principle stating that the maximal one-parameter family of multiple limit cycles terminates either at a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle which is also typically of the same multiplicity (cyclicity). Applying this principle, we prove that the quartic system (and the corresponding rational Holling system) can have at most two limit cycles surrounding one singular point.
-
Global limit cycle bifurcations of a polynomial Euler–Lagrange–Liénard system
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 693-705In this paper, using our bifurcation-geometric approach, we study global dynamics and solve the problem of the maximum number and distribution of limit cycles (self-oscillating regimes corresponding to states of dynamical equilibrium) in a planar polynomial mechanical system of the Euler–Lagrange–Liйnard type. Such systems are also used to model electrical, ecological, biomedical and other systems, which greatly facilitates the study of the corresponding real processes and systems with complex internal dynamics. They are used, in particular, in mechanical systems with damping and stiffness. There are a number of examples of technical systems that are described using quadratic damping in second-order dynamical models. In robotics, for example, quadratic damping appears in direct-coupled control and in nonlinear devices, such as variable impedance (resistance) actuators. Variable impedance actuators are of particular interest to collaborative robotics. To study the character and location of singular points in the phase plane of the Euler–Lagrange–Liйnard polynomial system, we use our method the meaning of which is to obtain the simplest (well-known) system by vanishing some parameters (usually, field rotation parameters) of the original system and then to enter sequentially these parameters studying the dynamics of singular points in the phase plane. To study the singular points of the system, we use the classical Poincarй index theorems, as well as our original geometric approach based on the application of the Erugin twoisocline method which is especially effective in the study of infinite singularities. Using the obtained information on the singular points and applying canonical systems with field rotation parameters, as well as using the geometric properties of the spirals filling the internal and external regions of the limit cycles and applying our geometric approach to qualitative analysis, we study limit cycle bifurcations of the system under consideration.
-
Ray trajectories, binomial coefficients of a new type, and the binary system
Computer Research and Modeling, 2010, v. 2, no. 4, pp. 359-397Views (last year): 5. Citations: 1 (RSCI).The paper describes a new algorithm of construction of the nonlinear arithmetic triangle on the basis of numerical simulation and the binary system. It demonstrates that the numbers that fill the nonlinear arithmetic triangle may be binomial coefficients of a new type. An analogy has been drawn with the binomial coefficients calculated with the use of the Pascal triangle. The paper provides a geometrical interpretation of binomials of different types in considering the branching systems of rays.
-
Estimation of natural frequencies of torsional vibrations of a composite nonlinearly viscoelastic shaft
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 421-430Views (last year): 27.The article presents a method for linearization the effective function of material instantaneous deformation in order to generalize the torsional vibration equation to the case of nonlinearly deformable rheologically active shafts. It is considered layered and structurally heterogeneous, on average isotropic shafts made of nonlinearly viscoelastic components. The technique consists in determining the approximate shear modulus by minimizing the root-mean-square deviation in approximation of the effective diagram of instantaneous deformation.
The method allows to estimate analytically values of natural frequencies of layered and structurally heterogeneous nonlinearly viscoelastic shaft. This makes it possible to significantly reduce resources in vibration analysis, as well as to track changes in values of natural frequencies with changing geometric, physico-mechanical and structural parameters of shafts, which is especially important at the initial stages of modeling and design. In addition, the paper shows that only a pronounced nonlinearity of the effective state equation has an effect on the natural frequencies, and in some cases the nonlinearity in determining the natural frequencies can be neglected.
As equations of state of the composite material components, the article considers the equations of nonlinear heredity with instantaneous deformation functions in the form of the Prandtl’s bilinear diagrams. To homogenize the state equations of layered shafts, it is applied the Voigt’s hypothesis on the homogeneity of deformations and the Reuss’ hypothesis on the homogeneity of stresses in the volume of a composite body. Using these assumptions, effective secant and tangential shear moduli, proportionality limits, as well as creep and relaxation kernels of longitudinal, axial and transversely layered shafts are obtained. In addition, it is obtained the indicated effective characteristics of a structurally heterogeneous, on average isotropic shaft using the homogenization method previously proposed by the authors, based on the determination of the material deformation parameters by the rule of a mixture for the Voigt’s and the Reuss’ state equations.
-
Modeling of deformation processes in structure of flexible woven composites
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 547-557Flexible woven composites are classified as high-tech innovative materials. Due to the combination of various components of the filler and reinforcement elements, such materials are used in construction, in the defense industry, in shipbuilding and aircraft construction, etc. In the domestic literature, insufficient attention is paid to woven composites that change their geometric structure of the reinforcing layer during deformation. This paper presents an analysis of the previously proposed complex approach to modeling the behavior of flexible woven composites under static uniaxial tension for further generalization of the approach to biaxial tension. The work is aimed at qualitative and quantitative description of mechanical deformation processes occurring in the structure of the studied materials under tension, which include straightening the strands of the reinforcing layer and increasing the value of mutual pressure of the cross-lying reinforcement strands. At the beginning of the deformation process, the straightening of the threads and the increase in mutual pressure of the threads are most intense. With the increase in the level of load, the change of these parameters slows down. For example, the bending of the reinforcement strands goes into the Central tension, and the value of the load from the mutual pressure is no longer increased (tends to constant). To simulate the described processes, the basic geometrical and mechanical parameters of the material affecting the process of forming are introduced, the necessary terminology and description of the characteristics are given. Due to the high geometric nonlinearity of the all processes described in the increments, as in the initial load values there is a significant deformation of the reinforcing layer. For the quantitative and qualitative description of mechanical deformation processes occurring in the reinforcing layer, analytical dependences are derived to determine the increment of the angle of straightening of reinforcement filaments and the load caused by the mutual pressure of the cross-lying filaments at each step of the load increment. For testing of obtained dependencies shows an example of their application for flexible woven composites brands VP4126, VP6131 and VP6545. The simulation results confirmed the assumptions about the processes of straightening the threads and slowing the increase in mutual pressure of the threads. The results and dependences presented in this paper are directly related to the further generalization of the previously proposed analytical models for biaxial tension, since stretching in two directions will significantly reduce the straightening of the threads and increase the amount of mutual pressure under similar loads.
-
Modeling of hydroelastic oscillations for a channel wall possessing a nonlinear elastic support
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 79-92The paper deals with the mathematical model formulation for studying the nonlinear hydro-elastic response of the narrow channel wall supported by a spring with cubic nonlinearity and interacting with a pulsating viscous liquid filling the channel. In contrast to the known approaches, within the framework of the proposed mathematical model, the inertial and dissipative properties of the viscous incompressible liquid and the restoring force nonlinearity of the supporting spring were simultaneously taken into account. The mathematical model was an equations system for the coupled plane hydroelasticity problem, including the motion equations of a viscous incompressible liquid, with the corresponding boundary conditions, and the channel wall motion equation as a single-degree-of-freedom model with a cubic nonlinear restoring force. Initially, the viscous liquid dynamics was investigated within the framework of the hydrodynamic lubrication theory, i. e. without taking into account the liquid motion inertia. At the next stage, the iteration method was used to take into account the motion inertia of the viscous liquid. The distribution laws of the hydrodynamic parameters for the viscous liquid in the channel were found which made it possible to determine its reaction acting on the channel wall. As a result, it was shown that the original hydroelasticity problem is reduced to a single nonlinear equation that coincides with the Duffing equation. In this equation, the damping coefficient is determined by the liquid physical properties and the channel geometric dimensions, and taking into account the liquid motion inertia lead to the appearance of an added mass. The nonlinear equation study for hydroelastic oscillations was carried out by the harmonic balance method for the main frequency of viscous liquid pulsations. As a result, the primary steady-state hydroelastic response for the channel wall supported by a spring with softening or hardening cubic nonlinearity was found. Numerical modeling of the channel wall hydroelastic response showed the possibility of a jumping change in the amplitudes of channel wall oscillations, and also made it possible to assess the effect of the liquid motion inertia on the frequency range in which these amplitude jumps are observed.
-
Optimal fishing and evolution of fish migration routes
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 879-893A new discrete ecological-evolutionary mathematical model is presented, in which the search mechanisms for evolutionarily stable migration routes of fish populations are implemented. The proposed adaptive designs have a small dimension, and therefore have high speed. This allows carrying out calculations on long-term perspective for an acceptable machine time. Both geometric approaches of nonlinear analysis and computer “asymptotic” methods were used in the study of stability. The migration dynamics of the fish population is described by a certain Markov matrix, which can change during evolution. The “basis” matrices are selected in the family of Markov matrices (of fixed dimension), which are used to generate migration routes of mutant. A promising direction of the evolution of the spatial behavior of fish is revealed for a given fishery and food supply, as a result of competition of the initial population with mutants. This model was applied to solve the problem of optimal catch for the long term, provided that the reservoir is divided into two parts, each of which has its own owner. Dynamic programming is used, based on the construction of the Bellman function, when solving optimization problems. A paradoxical strategy of “luring” was discovered, when one of the participants in the fishery temporarily reduces the catch in its water area. In this case, the migrating fish spends more time in this area (on condition of equal food supply). This route is evolutionarily fixes and does not change even after the resumption of fishing in the area. The second participant in the fishery can restore the status quo by applying “luring” to its part of the water area. Endless sequence of “luring” arises as a kind of game “giveaway”. A new effective concept has been introduced — the internal price of the fish population, depending on the zone of the reservoir. In fact, these prices are Bellman's private derivatives, and can be used as a tax on caught fish. In this case, the problem of long-term fishing is reduced to solving the problem of one-year optimization.
-
Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531Views (last year): 28.We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"