All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Controlling the movement of the body using internal masses in a viscous liquid
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 445-460Views (last year): 21. Citations: 2 (RSCI).This article is devoted to the study of self-propulsion of bodies in a fluid by the action of internal mechanisms, without changing the external shape of the body. The paper presents an overview of theoretical papers that justify the possibility of this displacement in ideal and viscous liquids.
A special case of self-propulsion of a rigid body along the surface of a liquid is considered due to the motion of two internal masses along the circles. The paper presents a mathematical model of the motion of a solid body with moving internal masses in a three-dimensional formulation. This model takes into account the three-dimensional vibrations of the body during motion, which arise under the action of external forces-gravity force, Archimedes force and forces acting on the body, from the side of a viscous fluid.
The body is a homogeneous elliptical cylinder with a keel located along the larger diagonal. Inside the cylinder there are two material point masses moving along the circles. The centers of the circles lie on the smallest diagonal of the ellipse at an equal distance from the center of mass.
Equations of motion of the system (a body with two material points, placed in a fluid) are represented as Kirchhoff equations with the addition of external forces and moments acting on the body. The phenomenological model of viscous friction is quadratic in velocity used to describe the forces of resistance to motion in a fluid. The coefficients of resistance to movement were determined experimentally. The forces acting on the keel were determined by numerical modeling of the keel oscillations in a viscous liquid using the Navier – Stokes equations.
In this paper, an experimental verification of the proposed mathematical model was carried out. Several series of experiments on self-propulsion of a body in a liquid by means of rotation of internal masses with different speeds of rotation are presented. The dependence of the average propagation velocity, the amplitude of the transverse oscillations as a function of the rotational speed of internal masses is investigated. The obtained experimental data are compared with the results obtained within the framework of the proposed mathematical model.
-
Transport modeling: averaging price matrices
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 317-327This paper considers various approaches to averaging the generalized travel costs calculated for different modes of travel in the transportation network. The mode of transportation is understood to mean both the mode of transport, for example, a car or public transport, and movement without the use of transport, for example, on foot. The task of calculating the trip matrices includes the task of calculating the total matrices, in other words, estimating the total demand for movements by all modes, as well as the task of splitting the matrices according to the mode, also called modal splitting. To calculate trip matrices, gravitational, entropy and other models are used, in which the probability of movement between zones is estimated based on a certain measure of the distance of these zones from each other. Usually, the generalized cost of moving along the optimal path between zones is used as a distance measure. However, the generalized cost of movement differs for different modes of movement. When calculating the total trip matrices, it becomes necessary to average the generalized costs by modes of movement. The averaging procedure is subject to the natural requirement of monotonicity in all arguments. This requirement is not met by some commonly used averaging methods, for example, averaging with weights. The problem of modal splitting is solved by applying the methods of discrete choice theory. In particular, within the framework of the theory of discrete choice, correct methods have been developed for averaging the utility of alternatives that are monotonic in all arguments. The authors propose some adaptation of the methods of the theory of discrete choice for application to the calculation of the average cost of movements in the gravitational and entropy models. The transfer of averaging formulas from the context of the modal splitting model to the trip matrix calculation model requires the introduction of new parameters and the derivation of conditions for the possible value of these parameters, which was done in this article. The issues of recalibration of the gravitational function, which is necessary when switching to a new averaging method, if the existing function is calibrated taking into account the use of the weighted average cost, were also considered. The proposed methods were implemented on the example of a small fragment of the transport network. The results of calculations are presented, demonstrating the advantage of the proposed methods.
-
Fuzzy modeling of human susceptibility to panic situations
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 203-218The study of the mechanism for the development of mass panic in view of its extreme importance and social danger is an important scientific task. Available information about the mechanism of her development is based mainly on the work of psychologists and belongs to the category of inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of a person's susceptibility to panic situations. As a result of the study, an fuzzy model was developed, consisting of blocks: “Fuzzyfication”, where the degree of belonging of the values of the input parameters to fuzzy sets is calculated; “Inference” where, based on the degree of belonging of the input parameters, the resulting function of belonging of the output value to an odd model is calculated; “Defuzzyfication”, where using the center of gravity method, the only quantitative value of the output variable characterizing a person's susceptibility to panic situations is determined Since the real quantitative values for linguistic variables mental properties of a person are unknown, then to assess the quality of the developed model, without endangering people, it is not possible. Therefore, the quality of the results of fuzzy modeling was estimated by the calculated value of the determination coefficient R2, which showed that the developed fuzzy model belongs to the category of good quality models $(R^2 = 0.93)$, which confirms the legitimacy of the assumptions made during her development. In accordance with to the results of the simulation, human susceptibility to panic situations for sanguinics and cholerics can be attributed to “increased” (0.88), and for phlegmatics and melancholics — to “moderate” (0.38). This means that cholerics and sanguinics can become epicenters of panic and the initiators of stampede, and phlegmatics and melancholics — obstacles to evacuation routes. What should be taken into account when developing effective evacuation measures, the main task of which is to quickly and safely evacuate people from adverse conditions. In the approved methods, the calculation of normative values of safety parameters is based on simplified analytical models of human flow movement, because a large number of factors have to be taken into account, some of which are quantitatively uncertain. The obtained result in the form of quantitative estimates of a person's susceptibility to panic situations will increase the accuracy of calculations.
-
Fuzzy modeling the mechanism of transmitting panic state among people with various temperament species
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1079-1092A mass congestion of people always represents a potential danger and threat for their lives. In addition, every year in the world a very large number of people die because of the crush, the main cause of which is mass panic. Therefore, the study of the phenomenon of mass panic in view of her extreme social danger is an important scientific task. Available information, about the processes of her occurrence and spread refers to the category inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of the mechanism of transmitting panic state among people with various temperament species.
When developing an fuzzy model, it was assumed that panic, from the epicenter of the shocking stimulus, spreads among people according to the wave principle, passing at different frequencies through different environments (types of human temperament), and is determined by the speed and intensity of the circular reaction of the mechanism of transmitting panic state among people. Therefore, the developed fuzzy model, along with two inputs, has two outputs — the speed and intensity of the circular reaction. In the block «Fuzzyfication», the degrees of membership of the numerical values of the input parameters to fuzzy sets are calculated. The «Inference» block at the input receives degrees of belonging for each input parameter and at the output determines the resulting function of belonging the speed of the circular reaction and her derivative, which is a function of belonging for the intensity of the circular reaction. In the «Defuzzyfication» block, using the center of gravity method, a quantitative value is determined for each output parameter. The quality assessment of the developed fuzzy model, carried out by calculating of the determination coefficient, showed that the developed mathematical model belongs to the category of good quality models.
The result obtained in the form of quantitative assessments of the circular reaction makes it possible to improve the quality of understanding of the mental processes occurring during the transmission of the panic state among people. In addition, this makes it possible to improve existing and develop new models of chaotic humans behaviors. Which are designed to develop effective solutions in crisis situations, aimed at full or partial prevention of the spread of mass panic, leading to the emergence of panic flight and the appearance of human casualties.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"