All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Transition to chaos in the «reaction–diffusion» systems. The simplest models
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 3-12Views (last year): 6. Citations: 1 (RSCI).The article discusses the emergence of chaotic attractors in the system of three ordinary differential equations arising in the theory of «reaction-diffusion» systems. The dynamics of the corresponding one- and two-dimensional maps and Lyapunov exponents of such attractors are studied. It is shown that the transition to chaos is in accordance with a non-traditional scenario of repeated birth and disappearance of chaotic regimes, which had been previously studied for one-dimensional maps with a sharp apex and a quadratic minimum. Some characteristic features of the system — zones of bistability and hyperbolicity, the crisis of chaotic attractors — are studied by means of numerical analysis.
-
Correct conditions on the boundary separating subdomains
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 347-356Views (last year): 2. Citations: 2 (RSCI).This paper presents definition and solution problem of correct conditions on the boundary, separating subdomains for hyperbolic linear equation systems. The solution algorithm is demonstrated by means of an example system of elastodynamic equations for two spatial variables. Stated approach can be easily expanded on systems of first-order linear hyperbolic equations with random number of spatial variables.
-
Scientific and pedagogical schools founded by A. S. Kholodov
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579Views (last year): 42.In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.
The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.
This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.
On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).
There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.
The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.
-
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 721-753Views (last year): 9. Citations: 1 (RSCI).Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.
-
Development of network computational models for the study of nonlinear wave processes on graphs
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.
-
Relaxation model of viscous heat-conducting gas
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 23-43A hyperbolic model of a viscous heat-conducting gas is presented, in which the Maxwell – Cattaneo approach is used to hyperbolize the equations, which provides finite wave propagation velocities. In the modified model, instead of the original Stokes and Fourier laws, their relaxation analogues were used and it is shown that when the relaxation times $\tau_\sigma^{}$ и $\tau_w^{}$ tend to The hyperbolized equations are reduced to zero to the classical Navier – Stokes system of non-hyperbolic type with infinite velocities of viscous and heat waves. It is noted that the hyperbolized system of equations of motion of a viscous heat-conducting gas considered in this paper is invariant not only with respect to the Galilean transformations, but also with respect to rotation, since the Yaumann derivative is used when differentiating the components of the viscous stress tensor in time. To integrate the equations of the model, the hybrid Godunov method (HGM) and the multidimensional nodal method of characteristics were used. The HGM is intended for the integration of hyperbolic systems in which there are equations written both in divergent form and not resulting in such (the original Godunov method is used only for systems of equations presented in divergent form). A linearized solver’s Riemann is used to calculate flow variables on the faces of adjacent cells. For divergent equations, a finitevolume approximation is applied, and for non-divergent equations, a finite-difference approximation is applied. To calculate a number of problems, we also used a non-conservative multidimensional nodal method of characteristics, which is based on splitting the original system of equations into a number of one-dimensional subsystems, for solving which a one-dimensional nodal method of characteristics was used. Using the described numerical methods, a number of one-dimensional problems on the decay of an arbitrary rupture are solved, and a two-dimensional flow of a viscous gas is calculated when a shock jump interacts with a rectangular step that is impermeable to gas.
-
Developing the mathematical model of road junction by the hydrodynamic approach
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 503-522Views (last year): 4.The purpose of this paper is to develop a macroscopic hydrodynamic model describing the vehicular traffic on a road junction and taking into account the distribution of traffic light phases and the existing road markings.
-
Development, calibration and verification of mathematical model for multilane urban road traffic flow. Part I
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1185-1203Views (last year): 4. Citations: 2 (RSCI).In this paper, we propose the unified procedure for the development and calibration of mathematical model for multilane urban road traffic flow. We use macroscopic approach, describing traffic flow with the system of second-order nonlinear hyperbolic equations (for traffic density and velocity). We close the resulting model with the equation of vehicle flow as a function of density, obtained empirically for each segment of road network using data from traffic detectors and vehicles’ GPS tracks. We verify the developed new model and calibration methods by using it to model segment of Moscows Ring Road.
-
Application of Turbulence Problem Solver (TPS) software complex for numerical modeling of the interaction between laser radiation and metals
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 619-630Views (last year): 15.The work is dedicated to the use of the software package Turbulence Problem Solver (TPS) for numerical simulation of a wide range of laser problems. The capabilities of the package are demonstrated by the example of numerical simulation of the interaction of femtosecond laser pulses with thin metal bonds. The software package TPS developed by the authors is intended for numerical solution of hyperbolic systems of differential equations on multiprocessor computing systems with distributed memory. The package is a modern and expandable software product. The architecture of the package gives the researcher the opportunity to model different physical processes in a uniform way, using different numerical methods and program blocks containing specific initial conditions, boundary conditions and source terms for each problem. The package provides the the opportunity to expand the functionality of the package by adding new classes of problems, computational methods, initial and boundary conditions, as well as equations of state of matter. The numerical methods implemented in the software package were tested on test problems in one-dimensional, two-dimensional and three-dimensional geometry, which included Riemann's problems on the decay of an arbitrary discontinuity with different configurations of the exact solution.
Thin films on substrates are an important class of targets for nanomodification of surfaces in plasmonics or sensor applications. Many articles are devoted to this subject. Most of them, however, focus on the dynamics of the film itself, paying little attention to the substrate, considering it simply as an object that absorbs the first compression wave and does not affect the surface structures that arise as a result of irradiation. The paper describes in detail a computational experiment on the numerical simulation of the interaction of a single ultrashort laser pulse with a gold film deposited on a thick glass substrate. The uniform rectangular grid and the first-order Godunov numerical method were used. The presented results of calculations allowed to confirm the theory of the shock-wave mechanism of holes formation in the metal under femtosecond laser action for the case of a thin gold film with a thickness of about 50 nm on a thick glass substrate.
-
Application of the grid-characteristic method for mathematical modeling in dynamical problems of deformable solid mechanics
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1041-1048
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"