Результаты поиска по 'linear dynamical systems':
Найдено статей: 43
  1. Dunyushkin D.Y.
    Test-signals forming method for correlation identification of nonlinear systems
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 721-733

    Тhe new test-signals forming method for correlation identification of a nonlinear system based on Lee–Shetzen cross-correlation approach is developed and tested. Numerical Gauss–Newton algorithm is applied to correct autocorrelation functions of test signals. The achieved test-signals have length less than 40 000 points and allow to measure the 2nd order Wiener kernels with a linear resolution up to 32 points, the 3rd order Wiener kernels with a linear resolution up to 12 points and the 4th order Wiener kernels with a linear resolution up to 8 points.

    Views (last year): 1. Citations: 3 (RSCI).
  2. WENO schemes (weighted, essentially non oscillating) are currently having a wide range of applications as approximate high order schemes for discontinuous solutions of partial differential equations. These schemes are used for direct numerical simulation (DNS) and large eddy simmulation in the gas dynamic problems, problems for DNS in MHD and even neutron kinetics. This work is dedicated to clarify some characteristics of WENO schemes and numerical simulation of specific tasks. Results of the simulations can be used to clarify the field of application of these schemes. The first part of the work contained proofs of the approximation properties, stability and convergence of WENO5, WENO7, WENO9, WENO11 and WENO13 schemes. In the second part of the work the modified wave number analysis is conducted that allows to conclude the dispersion and dissipative properties of schemes. Further, a numerical simulation of a number of specific problems for hyperbolic equations is conducted, namely for advection equations (one-dimensional and two-dimensional), Hopf equation, Burgers equation (with low dissipation) and equations of non viscous gas dynamics (onedimensional and two-dimensional). For each problem that is implying a smooth solution, the practical calculation of the order of approximation via Runge method is performed. The influence of a time step on nonlinear properties of the schemes is analyzed experimentally in all problems and cross checked with the first part of the paper. In particular, the advection equations of a discontinuous function and Hopf equations show that the failure of the recommendations from the first part of the paper leads first to an increase in total variation of the solution and then the approximation is decreased by the non-linear dissipative mechanics of the schemes. Dissipation of randomly distributed initial conditions in a periodic domain for one-dimensional Burgers equation is conducted and a comparison with the spectral method is performed. It is concluded that the WENO7–WENO13 schemes are suitable for direct numerical simulation of turbulence. At the end we demonstrate the possibility of the schemes to be used in solution of initial-boundary value problems for equations of non viscous gas dynamics: Rayleigh–Taylor instability and the reflection of the shock wave from a wedge with the formation a complex configuration of shock waves and discontinuities.

    Views (last year): 13.
  3. Dzhinchvelashvili G.A., Dzerzhinsky R.I., Denisenkova N.N.
    Quantitative assessment of seismic risk and energy concepts of earthquake engineering
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 61-76

    Currently, earthquake-resistant design of buildings based on the power calculation and presentation of effect of the earthquake static equivalent forces, which are calculated using elastic response spectra (linear-spectral method) that connects the law of motion of the soil with the absolute acceleration of the model in a nonlinear oscillator.

    This approach does not directly take into account either the influence of the duration of strong motion or the plastic behavior of the structure. Frequency content and duration of ground vibrations directly affect the energy received by the building and causing damage to its elements. Unlike power or kinematic calculation of the seismic effect on the structure can be interpreted without considering separately the forces and displacements and to provide, as the product of both variables, i.e., the work or input energy (maximum energy that can be purchased building to the earthquake).

    With the energy approach of seismic design, it is necessary to evaluate the input seismic energy in the structure and its distribution among various structural components.

    The article provides substantiation of the energy approach in the design of earthquake-resistant buildings and structures instead of the currently used method based on the power calculation and presentation of effect of the earthquake static equivalent forces, which are calculated using spectra of the reaction.

    Noted that interest in the use of energy concepts in earthquake-resistant design began with the works of Housner, which provided the seismic force in the form of the input seismic energy, using the range of speeds, and suggested that the damage in elastic-plastic system and elastic system causes one and the same input seismic energy.

    The indices of the determination of the input energy of the earthquake, proposed by various authors, are given in this paper. It is shown that modern approaches to ensuring seismic stability of structures, based on the representation of the earthquake effect as a static equivalent force, do not adequately describe the behavior of the system during an earthquake.

    In this paper, based on quantitative estimates of seismic risk analyzes developed in the NRU MSUCE Standard Organization (STO) “Seismic resistance structures. The main design provisions”. In the developed document a step forward with respect to the optimal design of earthquake-resistant structures.

    The proposed concept of using the achievements of modern methods of calculation of buildings and structures on seismic effects, which are harmonized with the Eurocodes and are not contrary to the system of national regulations.

    Views (last year): 21.
  4. Okulov A.Y.
    Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992

    The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.

  5. Sosin A.V., Sidorenko D.A., Utkin P.S.
    Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540

    The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.

    The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.

  6. Doludenko A.N., Kulikov Y.M., Panov V.A., Saveliev A.S., Tereshonok D.V.
    Development of the water – oil interface instability in a vertical electric field
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 633-645

    The presence of a contact boundary between water and transformer oil greatly reduces the electrical strength of the oil phase. The presence of an electric field leads to varying degrees of polarization at the interface and the appearance of a force acting on a liquid with a higher dielectric constant (water) in the direction of a liquid with a lower dielectric constant (oil). This leads to the contact surface instability development. Instability as a result of its development leads to a stream of water being drawn into oil volume and a violation of the insulating gap. In this work, we experimentally and numerically study electrohydrodynamic instability at the phase boundary between electrically weakly conductive water and transformer oil in a highly inhomogeneous electric field directed perpendicular to the contact boundary. The results of a full-scale and numerical experiment of studying of the electrohydrodynamic instability development in a strong electric field at the interface between water and transformer oil are presented. The system consists of a spherical electrode with a radius of 3.5 mm, placed in water with a conductivity of 5 $\mu S/cm$, and a thin blade electrode 0.1 mm thick, placed in transformer oil of the GK brand. The contact boundary passes at the same distance from the nearest points of the electrodes, equal to 3 mm. The work shows that at a certain electric field strength, the cone-shaped structure of water grows towards the electrode immersed in transformer oil. A numerical correspondence was obtained for both the shape of the resulting water structure (cone) during the entire growth time and the size measured from its top to the level of the initial contact boundary of phase separation. The dynamics of this structure growth has been studied. Both in numerical calculations and in experiment, it was found that the size of the resulting cone along the electrode connection line depends linearly on time.

  7. Bagaev R.A., Golubev V.I., Golubeva Y.A.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

  8. Sidorenko D.A., Utkin P.S.
    Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766

    In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.

    The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.

  9. Voloshin A.S., Konyukhov A.V., Pankratov L.S.
    Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580

    A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.

  10. Different versions of the shifting mode of reproduction models describe set of the macroeconomic production subsystems interacting with each other, to each of which there corresponds the household. These subsystems differ among themselves on age of the fixed capital used by them as they alternately stop production for its updating by own forces (for repair of the equipment and for introduction of the innovations increasing production efficiency). It essentially distinguishes this type of models from the models describing the mode of joint reproduction in case of which updating of fixed capital and production of a product happen simultaneously. Models of the shifting mode of reproduction allow to describe mechanisms of such phenomena as cash circulations and amortization, and also to describe different types of monetary policy, allow to interpret mechanisms of economic growth in a new way. Unlike many other macroeconomic models, model of this class in which the subsystems competing among themselves serially get an advantage in comparison with the others because of updating, essentially not equilibrium. They were originally described as a systems of ordinary differential equations with abruptly varying coefficients. In the numerical calculations which were carried out for these systems depending on parameter values and initial conditions both regular, and not regular dynamics was revealed. This paper shows that the simplest versions of this model without the use of additional approximations can be represented in a discrete form (in the form of non-linear mappings) with different variants (continuous and discrete) financial flows between subsystems (interpreted as wages and subsidies). This form of representation is more convenient for receipt of analytical results as well as for a more economical and accurate numerical calculations. In particular, its use allowed to determine the entry conditions corresponding to coordinated and sustained economic growth without systematic lagging in production of a product of one subsystems from others.

    Views (last year): 1. Citations: 4 (RSCI).
Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"