Результаты поиска по 'method':
Найдено статей: 636
  1. Shirokova E.N., Sadin D.V.
    Wave and relaxation effects during the outflow of a gas suspension partially filling a cylindrical channel
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1495-1506

    The paper is devoted to the study of wave and relaxation effects during the pulsed outflow of a gas mixture with a high content of solid particles from a cylindrical channel during its initial partial filling. The problem is formulated in a two-speed two-temperature formulation and was solved numerically by the hybrid large-particle method of the second order of approximation. The numerical algorithm is implemented in the form of parallel computing using basic Free Pascal language tools. The applicability and accuracy of the method for wave flows of concentrated gas-particles mixtures is confirmed by comparison with test asymptotically accurate solutions. The calculation error on a grid of low detail in the characteristic flow zones of a two-phase medium was 10-6 . . . 10-5.

    Based on the wave diagram, the analysis of the physical pattern of the outflow of a gas suspension partially filling a cylindrical channel is performed. It is established that, depending on the degree of initial filling of the channel, various outflow modes are formed. The first mode is implemented with a small degree of loading of the high-pressure chamber, at which the left boundary of the gas-particles mixture crosses the outlet section before the arrival of the rarefaction wave reflected from the bottom of the channel. At the same time, the maximum value of the mass flow rate of the mixture is achieved. Other modes are formed in cases of a larger initial filling of the channel, when the rarefaction waves reflected from the bottom of the channel interact with the gas suspension layer and reduce the intensity of its outflow.

    The influence of relaxation properties with changing particle size on the dynamics of a limited layer of a gas-dispersed medium is studied. Comparison of the outflow of a limited gas suspension layer with different particle sizes shows that for small particles (the Stokes number is less than 0.001), an anomalous phenomenon of the simultaneous existence of shock wave structures in the supersonic and subsonic flow of gas and suspension is observed. With an increase in the size of dispersed inclusions, the compaction jumps in the region of the two-phase mixture are smoothed out, and for particles (the Stokes number is greater than 0.1), they practically disappear. At the same time, the shock-wave configuration of the supersonic gas flow at the outlet of the channel is preserved, and the positions and boundaries of the energy-carrying volumes of the gas suspension are close when the particle sizes change.

  2. Beshtokov M.K.
    Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373

    The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.

  3. Mezentsev Y.A., Razumnikova O.M., Estraykh I.V., Tarasova I.V., Trubnikova O.A.
    Tasks and algorithms for optimal clustering of multidimensional objects by a variety of heterogeneous indicators and their applications in medicine
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 673-693

    The work is devoted to the description of the author’s formal statements of the clustering problem for a given number of clusters, algorithms for their solution, as well as the results of using this toolkit in medicine.

    The solution of the formulated problems by exact algorithms of implementations of even relatively low dimensions before proving optimality is impossible in a finite time due to their belonging to the NP class.

    In this regard, we have proposed a hybrid algorithm that combines the advantages of precise methods based on clustering in paired distances at the initial stage with the speed of methods for solving simplified problems of splitting by cluster centers at the final stage. In the development of this direction, a sequential hybrid clustering algorithm using random search in the paradigm of swarm intelligence has been developed. The article describes it and presents the results of calculations of applied clustering problems.

    To determine the effectiveness of the developed tools for optimal clustering of multidimensional objects according to a variety of heterogeneous indicators, a number of computational experiments were performed using data sets including socio-demographic, clinical anamnestic, electroencephalographic and psychometric data on the cognitive status of patients of the cardiology clinic. An experimental proof of the effectiveness of using local search algorithms in the paradigm of swarm intelligence within the framework of a hybrid algorithm for solving optimal clustering problems has been obtained.

    The results of the calculations indicate the actual resolution of the main problem of using the discrete optimization apparatus — limiting the available dimensions of task implementations. We have shown that this problem is eliminated while maintaining an acceptable proximity of the clustering results to the optimal ones. The applied significance of the obtained clustering results is also due to the fact that the developed optimal clustering toolkit is supplemented by an assessment of the stability of the formed clusters, which allows for known factors (the presence of stenosis or older age) to additionally identify those patients whose cognitive resources are insufficient to overcome the influence of surgical anesthesia, as a result of which there is a unidirectional effect of postoperative deterioration of complex visual-motor reaction, attention and memory. This effect indicates the possibility of differentiating the classification of patients using the proposed tools.

  4. Yankovskaya U.I., Starostenkov M.D., Medvedev N.N., Zakharov P.V.
    Methods for modeling composites reinforced with carbon nanotubes: review and perspectives
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1143-1162

    The study of the structural characteristics of composites and nanostructures is of fundamental importance in materials science. Theoretical and numerical modeling and simulation of the mechanical properties of nanostructures is the main tool that allows for complex studies that are difficult to conduct only experimentally. One example of nanostructures considered in this work are carbon nanotubes (CNTs), which have good thermal and electrical properties, as well as low density and high Young’s modulus, making them the most suitable reinforcement element for composites, for potential applications in aerospace, automotive, metallurgical and biomedical industries. In this review, we reviewed the modeling methods, mechanical properties, and applications of CNT-reinforced metal matrix composites. Some modeling methods applicable in the study of composites with polymer and metal matrices are also considered. Methods such as the gradient descent method, the Monte Carlo method, methods of molecular statics and molecular dynamics are considered. Molecular dynamics simulations have been shown to be excellent for creating various composite material systems and studying the properties of metal matrix composites reinforced with carbon nanomaterials under various conditions. This paper briefly presents the most commonly used potentials that describe the interactions of composite modeling systems. The correct choice of interaction potentials between parts of composites directly affects the description of the phenomenon being studied. The dependence of the mechanical properties of composites on the volume fraction of the diameter, orientation, and number of CNTs is detailed and discussed. It has been shown that the volume fraction of carbon nanotubes has a significant effect on the tensile strength and Young’s modulus. The CNT diameter has a greater impact on the tensile strength than on the elastic modulus. An example of works is also given in which the effect of CNT length on the mechanical properties of composites is studied. In conclusion, we offer perspectives on the direction of development of molecular dynamics modeling in relation to metal matrix composites reinforced with carbon nanomaterials.

  5. Zhidkov E.P., Voloshina I.G., Polyakova R.V., Perepelkin E.E., Rossiyskaya N.S., Shavrina T.V., Yudin I.P.
    Computer modeling of magnet systems for physical setups
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 189-198

    This work gives results of numerical simulation of a superconducting magnetic focusing system. While modeling this system, special care was taken to achieve approximation accuracy over the condition u(∞)=0 by using Richardson method. The work presents the results of comparison of the magnetic field calculated distribution with measurements of the field performed on a modified magnet SP-40 of “MARUSYA” physical installation. This work also presents some results of numeric analysis of magnetic systems of “MARUSYA” physical installation with the purpose to study an opportunity of designing magnetic systems with predetermined characteristics of the magnetic field.

    Views (last year): 4. Citations: 2 (RSCI).
  6. Zlenko D.V., Krasilnikov P.M.
    Permeability of lipid membranes. A molecular dynamic study
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 423-436

    A correct model of lipid molecule (distearoylphosphatidylcholine, DSPC) and lipid membrane in water was constructed. Model lipid membrane is stable and has a reliable energy distribution among degrees of freedom. Also after equilibration model system has spatial parameters very similar to those of real DSPC membrane in liquid-crystalline phase. This model was used for studying of lipid membrane permeability to oxygen and water molecules and sodium ion. We obtained the values for transmembrane mobility and diffusion coefficients profiles, which we used for effective permeability coefficients calculation. We found lipid membranes to have significant diffusional resistance to penetration not only by charged particles, such as ions, but also by nonpolar molecules, such as oxygen molecule. We propose theoretical approach for calculation of particle flow across a membrane, as well as methods for estimation of distribution coefficients between bilayer and water phase.

    Views (last year): 20. Citations: 2 (RSCI).
  7. Shulga O.A., Saakyan S.V., Skladnev D.A.
    A new biometric approach and efficient system for automatic detection and analysis of digital retinal images
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 189-197

    The program for automatic revealing of threshold values for characterizing physiological state of vessels and detection of early stages of retina pathology is offered. The algorithm is based on checking character of crossing sites of vessel images with the "mask" consisting of concentric circumferences (the first circumference is imposed directly on the sclera capsules of an optic nerve disk). The new method allows revealing of a network of blood vessels and flanking zones and detection of initial stage of pathological changes in a retina by digital images.

    Views (last year): 3.
  8. Samarin K.V.
    Mathematical modeling of neutron transfers in nuclear reactions considering spin-orbit interaction
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 393-401

    The difference scheme for numerical solution of a time-dependant system of two Schrödinger equations with the operator of a spin-orbit interaction for a two-component spinor wave function is offered on the basis of a split method for a time-dependant Schrödinger equations. The computer simulation of the external neutrons’ wave functions evolution with different values of the full moment projection upon internuclear axis and probabilities of their transfer are executed for head-on collisions of 18O and 58Ni nuclei.

    Views (last year): 4.
  9. Turchenkov D.A., Turchenkov M.A.
    Analysis of simplifications of numerical schemes for Langevin equation, effect of variations in the correlation of augmentations
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 325-338

    The possibility to simplify the integration of Langevin equation using the variation of correlation between augmentation was researched. The analytical expression for a set of numerical schemes is presented. It’s shown that asymptotic limits for squared velocity depend on step size. The region of convergence and the convergence orders were estimated. It turned out that the incorrect correlation between increments decrease the accuracy down to the level of first-order methods for schemes based on precise solution.

    Views (last year): 5. Citations: 4 (RSCI).
  10. Shilkov A.V., Gertsev M.N., Aristova E.N., Shilkova S.V.
    Benchmark «line-by-line» calculations of atmospheric radiation
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 553-562

    The paper presents the methodology of «line-by-line» calculations of the Earth and atmosphere thermal radiation. Intensity of radiation is computed by numerical integration of the radiative transfer kinetic equation and the system of the angular momentum equations using quasi-diffusion method. Data from HITRAN molecular spectroscopic database [Rothman et al., 2009] are used to calculate the atmosphere optical parameters.

    Views (last year): 4. Citations: 3 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"