All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
The influence of tail fins on the speed of an aquatic robot driven by internal moving masses
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 869-882This paper describes the design of an aquatic robot moving on the surface of a fluid and driven by two internal moving masses. The body of the aquatic robot in cross section has the shape of a symmetrical airfoil with a sharp edge. In this prototype, two internal masses move in circles and are rotated by a single DC motor and a gear mechanism that transmits torque from the motor to each mass. Angular velocities of moving masses are used as a control action, and the developed kinematic scheme for transmitting rotation from the motor to the moving masses allows the rotation of two masses with equal angular velocities in magnitude, but with a different direction of rotation. It is also possible to install additional tail fins of various shapes and sizes on the body of this robot. Also in the work for this object, the equations of motion are presented, written in the form of Kirchhoff equations for the motion of a solid body in an ideal fluid, which are supplemented by terms of viscous resistance. A mathematical description of the additional forces acting on the flexible tail fin is presented. Experimental studies on the influence of various tail fins on the speed of motion in the fluid were carried out with the developed prototype of the robot. In this work, tail fins of the same shape and size were installed on the robot, while having different stiffness. The experiments were carried out in a pool with water, over which a camera was installed, on which video recordings of all the experiments were obtained. Next processing of the video recordings made it possible to obtain the object’s movements coordinates, as well as its linear and angular velocities. The paper shows the difference in the velocities developed by the robot when moving without a tail fin, as well as with tail fins having different stiffness. The comparison of the velocities developed by the robot, obtained in experimental studies, with the results of mathematical modeling of the system is given.
-
Optimisation of parameters and structure of a parallel spherical manipulator
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1523-1534The paper is a study of the mathematical model and kinematics of a parallel spherical manipulator. This type of manipulator was proposed back in the 80s of the last century and has since found application in exoskeletons and rehabilitation robots due to its structure, which allows imitating natural joint movements of the human body.
The Parallel Spherical Manipulator is a robot with three legs and two platforms, a base platform and a mobile platform. Its legs consist of two support links that are arc-shaped. Mathematically, the manipulator can be described using two virtual pyramids that are placed on top of each other.
The paper considers two types of manipulator configurations: classical and asymmetric, and solves basic kinematic problems for each. The study shows that the asymmetric design of the manipulator has the maximum workspace, especially when the motors are mounted at the joints of the manipulator’s links inside legs.
To optimize the parameters of the parallel spherical manipulator, we introduced a metric of usable workspace volume. This metric represents the volume of the sector of the sphere in which the robot does not experience internal collisions or singular states. There are three types of singular states possible within a parallel spherical manipulator — serial, parallel, and mixed singularity. We used all three types of singularities to calculate the useful volume. In our research work, we solved the problem related to maximizing the usable volume of the workspace.
Through our research work, we found that the asymmetric configuration of the spherical manipulator maximizes the workspace when the motors are located at the articulation point of the robot leg support arms. At the same time, the parameter $\beta_1$ must be zero degrees to maximize the workspace. This allowed us to create a prototype robot in which we eliminated the use of lower links in legs in favor of a radiused rail along which the motors run. This allowed us to reduce the linear dimensions of the robot itself and gain on the stiffness of the structure.
The results obtained can be used to optimize the parameters of the parallel spherical manipulator in various industrial and scientific applications, as well as for further research of other types of parallel robots and manipulators.
-
Motion control by a highly maneuverable mobile robot in the task of following an object
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1301-1321This article is devoted to the development of an algorithm for trajectory control of a highly maneuverable four-wheeled robotic transport platform equipped with mecanum wheels, in order to organize its movement behind some moving object. The calculation of the kinematic ratios of this platform in a fixed coordinate system is presented, which is necessary to determine the angular velocities of the robot wheels depending on a given velocity vector. An algorithm has been developed for the robot to follow a mobile object on a plane without obstacles based on the use of a modified chase method using different types of control functions. The chase method consists in the fact that the velocity vector of the geometric center of the platform is co-directed with the vector connecting the geometric center of the platform and the moving object. Two types of control functions are implemented: piecewise and constant. The piecewise function means control with switching modes depending on the distance from the robot to the target. The main feature of the piecewise function is a smooth change in the robot’s speed. Also, the control functions are divided according to the nature of behavior when the robot approaches the target. When using one of the piecewise functions, the robot’s movement slows down when a certain distance between the robot and the target is reached and stops completely at a critical distance. Another type of behavior when approaching the target is to change the direction of the velocity vector to the opposite, if the distance between the platform and the object is the minimum allowable, which avoids collisions when the target moves in the direction of the robot. This type of behavior when approaching the goal is implemented for a piecewise and constant function. Numerical simulation of the robot control algorithm for various control functions in the task of chasing a target, where the target moves in a circle, is performed. The pseudocode of the control algorithm and control functions is presented. Graphs of the robot’s trajectory when moving behind the target, speed changes, changes in the angular velocities of the wheels from time to time for various control functions are shown.
-
Motion control of a rigid body in viscous fluid
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 659-675Views (last year): 2. Citations: 1 (RSCI).We consider the optimal motion control problem for a mobile device with an external rigid shell moving along a prescribed trajectory in a viscous fluid. The mobile robot under consideration possesses the property of self-locomotion. Self-locomotion is implemented due to back-and-forth motion of an internal material point. The optimal motion control is based on the Sugeno fuzzy inference system. An approach based on constructing decision trees using the genetic algorithm for structural and parametric synthesis has been proposed to obtain the base of fuzzy rules.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"