Результаты поиска по 'mobile robot':
Найдено статей: 3
  1. Skvortsova V.A., Abdullin R.R., Stepanova A.A.
    Optimisation of parameters and structure of a parallel spherical manipulator
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1523-1534

    The paper is a study of the mathematical model and kinematics of a parallel spherical manipulator. This type of manipulator was proposed back in the 80s of the last century and has since found application in exoskeletons and rehabilitation robots due to its structure, which allows imitating natural joint movements of the human body.

    The Parallel Spherical Manipulator is a robot with three legs and two platforms, a base platform and a mobile platform. Its legs consist of two support links that are arc-shaped. Mathematically, the manipulator can be described using two virtual pyramids that are placed on top of each other.

    The paper considers two types of manipulator configurations: classical and asymmetric, and solves basic kinematic problems for each. The study shows that the asymmetric design of the manipulator has the maximum workspace, especially when the motors are mounted at the joints of the manipulator’s links inside legs.

    To optimize the parameters of the parallel spherical manipulator, we introduced a metric of usable workspace volume. This metric represents the volume of the sector of the sphere in which the robot does not experience internal collisions or singular states. There are three types of singular states possible within a parallel spherical manipulator — serial, parallel, and mixed singularity. We used all three types of singularities to calculate the useful volume. In our research work, we solved the problem related to maximizing the usable volume of the workspace.

    Through our research work, we found that the asymmetric configuration of the spherical manipulator maximizes the workspace when the motors are located at the articulation point of the robot leg support arms. At the same time, the parameter $\beta_1$ must be zero degrees to maximize the workspace. This allowed us to create a prototype robot in which we eliminated the use of lower links in legs in favor of a radiused rail along which the motors run. This allowed us to reduce the linear dimensions of the robot itself and gain on the stiffness of the structure.

    The results obtained can be used to optimize the parameters of the parallel spherical manipulator in various industrial and scientific applications, as well as for further research of other types of parallel robots and manipulators.

  2. Mikishanina E.A., Platonov P.S.
    Motion control by a highly maneuverable mobile robot in the task of following an object
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1301-1321

    This article is devoted to the development of an algorithm for trajectory control of a highly maneuverable four-wheeled robotic transport platform equipped with mecanum wheels, in order to organize its movement behind some moving object. The calculation of the kinematic ratios of this platform in a fixed coordinate system is presented, which is necessary to determine the angular velocities of the robot wheels depending on a given velocity vector. An algorithm has been developed for the robot to follow a mobile object on a plane without obstacles based on the use of a modified chase method using different types of control functions. The chase method consists in the fact that the velocity vector of the geometric center of the platform is co-directed with the vector connecting the geometric center of the platform and the moving object. Two types of control functions are implemented: piecewise and constant. The piecewise function means control with switching modes depending on the distance from the robot to the target. The main feature of the piecewise function is a smooth change in the robot’s speed. Also, the control functions are divided according to the nature of behavior when the robot approaches the target. When using one of the piecewise functions, the robot’s movement slows down when a certain distance between the robot and the target is reached and stops completely at a critical distance. Another type of behavior when approaching the target is to change the direction of the velocity vector to the opposite, if the distance between the platform and the object is the minimum allowable, which avoids collisions when the target moves in the direction of the robot. This type of behavior when approaching the goal is implemented for a piecewise and constant function. Numerical simulation of the robot control algorithm for various control functions in the task of chasing a target, where the target moves in a circle, is performed. The pseudocode of the control algorithm and control functions is presented. Graphs of the robot’s trajectory when moving behind the target, speed changes, changes in the angular velocities of the wheels from time to time for various control functions are shown.

  3. Vetchanin E.V., Tenenev V.A., Shaura A.S.
    Motion control of a rigid body in viscous fluid
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 659-675

    We consider the optimal motion control problem for a mobile device with an external rigid shell moving along a prescribed trajectory in a viscous fluid. The mobile robot under consideration possesses the property of self-locomotion. Self-locomotion is implemented due to back-and-forth motion of an internal material point. The optimal motion control is based on the Sugeno fuzzy inference system. An approach based on constructing decision trees using the genetic algorithm for structural and parametric synthesis has been proposed to obtain the base of fuzzy rules.

    Views (last year): 2. Citations: 1 (RSCI).

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"