All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Percolation modeling of hydraulic hysteresis in a porous media
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 543-558Views (last year): 3. Citations: 1 (RSCI).In this paper we consider various models of hydraulic hysteresis in invasive mercury porosimetry. For simulating the hydraulic hysteresis is used isotropic site percolation on three-dimensional square lattices with $(1,\,\pi)$-neighborhood. The relationship between the percolation model parameters and invasive porosimetry data is studied phenomenologically. The implementation of the percolation model is based on libraries SPSL and SECP, released under license GNU GPL-3 using the free programming language R.
-
The structure of site percolation models on three-dimensional square lattices
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 607-622Views (last year): 8. Citations: 5 (RSCI).In this paper we consider the structure of site percolation models on three-dimensional square lattices with various shapes of (1,π)-neighborhood. For these models, are proposed iso- and anisotropic modifications of the invasion percolation algorithm with (1,0)- and (1,π)-neighborhoods. All the above algorithms are special cases of the anisotropic invasion percolation algorithm on the n-dimensional lattice with a (1,π)-neighborhood. This algorithm is the basis for the package SPSL, released under GNU GPL-3 using the free programming language R.
-
Mathematical investigation of antiangiogenic monotherapy effect on heterogeneous tumor progression
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 487-501Views (last year): 10. Citations: 2 (RSCI).In the last decade along with classical cytotoxic agents, antiangiogenic drugs have been actively used in cancer chemotherapy. They are not aimed at killing malignant cells, but at blocking the process of angiogenesis, i.e., the growth of new vessels in the tumor and its surrounding tissues. Agents that stimulate angiogenesis, in particular, vascular endothelial growth factor, are actively produced by tumor cells in the state of metabolic stress. It is believed that blocking of tumor neovascularization should lead to a shortage of nutrients flow to the tumor, and thus can stop, or at least significantly slow down its growth. Clinical practice on the use of first antiangiogenic drug bevacizumab has shown that in some cases such therapy does not influence the growth rate of the tumor, whereas for other types of malignant neoplasms antiangiogenic therapy has a high antitumor effect. However, it has been shown that along with successful slowing of tumor growth, therapy with bevacizumab can induce directed tumor progression to a more invasive, and therefore more lethal, type. These data require theoretical analysis and rationale for the evolutionary factors that lead to the observation of epithelial-mesenchymal transition. For this purpose we have developed a spatially distributed mathematical model of growth and antiangiogenic therapy of heterogeneous tumor consisting of two subpopulations of malignant cells. One of subpopulations possesses inherent characteristics of epithelial phenotype, i.e., low motility and high proliferation rate, the other one corresponds to mesenchymal phenotype having high motility and low proliferation rate. We have performed the investigation of competition between these subpopulations of heterogeneous tumor in the cases of tumor growth without therapy and under bevacizumab monotherapy. It is shown that constant use of antiangiogenic drug leads to an increase of the region in parameter space, where the dominance of mesenchymal phenotype takes place, i.e., within a certain range of parameters in the absence of therapy epithelial phenotype is dominant but during bevacizumab administration mesenchymal phenotype begins to dominate. This result provides a theoretical basis of the clinically observed directed tumor progression to more invasive type under antiangiogenic therapy.
-
Models of population process with delay and the scenario for adaptive resistance to invasion
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 147-161Changes in abundance for emerging populations can develop according to several dynamic scenarios. After rapid biological invasions, the time factor for the development of a reaction from the biotic environment will become important. There are two classic experiments known in history with different endings of the confrontation of biological species. In Gause’s experiments with ciliates, the infused predator, after brief oscillations, completely destroyed its resource, so its $r$-parameter became excessive for new conditions. Its own reproductive activity was not regulated by additional factors and, as a result, became critical for the invader. In the experiments of the entomologist Uchida with parasitic wasps and their prey beetles, all species coexisted. In a situation where a population with a high reproductive potential is regulated by several natural enemies, interesting dynamic effects can occur that have been observed in phytophages in an evergreen forest in Australia. The competing parasitic hymenoptera create a delayed regulation system for rapidly multiplying psyllid pests, where a rapid increase in the psyllid population is allowed until the pest reaches its maximum number. A short maximum is followed by a rapid decline in numbers, but minimization does not become critical for the population. The paper proposes a phenomenological model based on a differential equation with a delay, which describes a scenario of adaptive regulation for a population with a high reproductive potential with an active, but with a delayed reaction with a threshold regulation of exposure. It is shown that the complication of the regulation function of biotic resistance in the model leads to the stabilization of the dynamics after the passage of the minimum number by the rapidly breeding species. For a flexible system, transitional regimes of growth and crisis lead to the search for a new equilibrium in the evolutionary confrontation.
-
Monitoring the spread of Sosnowskyi’s hogweed using a random forest machine learning algorithm in Google Earth Engine
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1357-1370Examining the spectral response of plants from data collected using remote sensing has a lot of potential for solving real-world problems in different fields of research. In this study, we have used the spectral property to identify the invasive plant Heracleum sosnowskyi Manden from satellite imagery. H. sosnowskyi is an invasive plant that causes many harms to humans, animals and the ecosystem at large. We have used data collected from the years 2018 to 2020 containing sample geolocation data from the Moscow Region where this plant exists and we have used Sentinel-2 imagery for the spectral analysis towards the aim of detecting it from the satellite imagery. We deployed a Random Forest (RF) machine learning model within the framework of Google Earth Engine (GEE). The algorithm learns from the collected data, which is made up of 12 bands of Sentinel-2, and also includes the digital elevation together with some spectral indices, which are used as features in the algorithm. The approach used is to learn the biophysical parameters of H. sosnowskyi from its reflectances by fitting the RF model directly from the data. Our results demonstrate how the combination of remote sensing and machine learning can assist in locating H. sosnowskyi, which aids in controlling its invasive expansion. Our approach provides a high detection accuracy of the plant, which is 96.93%.
-
Mathematical modeling of carcinoma growth with a dynamic change in the phenotype of cells
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 879-902Views (last year): 46.In this paper, we proposed a two-dimensional chemo-mechanical model of the growth of invasive carcinoma in epithelial tissue. Each cell is modeled by an elastic polygon, changing its shape and size under the influence of pressure forces acting from the tissue. The average size and shape of the cells have been calibrated on the basis of experimental data. The model allows to describe the dynamic deformations in epithelial tissue as a collective evolution of cells interacting through the exchange of mechanical and chemical signals. The general direction of tumor growth is controlled by a pre-established linear gradient of nutrient concentration. Growth and deformation of the tissue occurs due to the mechanisms of cell division and intercalation. We assume that carcinoma has a heterogeneous structure made up of cells of different phenotypes that perform various functions in the tumor. The main parameter that determines the phenotype of a cell is the degree of its adhesion to the adjacent cells. Three main phenotypes of cancer cells are distinguished: the epithelial (E) phenotype is represented by internal tumor cells, the mesenchymal (M) phenotype is represented by single cells and the intermediate phenotype is represented by the frontal tumor cells. We assume also that the phenotype of each cell under certain conditions can change dynamically due to epithelial-mesenchymal (EM) and inverse (ME) transitions. As for normal cells, we define the main E-phenotype, which is represented by ordinary cells with strong adhesion to each other. In addition, the normal cells that are adjacent to the tumor undergo a forced EM-transition and form an M-phenotype of healthy cells. Numerical simulations have shown that, depending on the values of the control parameters as well as a combination of possible phenotypes of healthy and cancer cells, the evolution of the tumor can result in a variety of cancer structures reflecting the self-organization of tumor cells of different phenotypes. We compare the structures obtained numerically with the morphological structures revealed in clinical studies of breast carcinoma: trabecular, solid, tubular, alveolar and discrete tumor structures with ameboid migration. The possible scenario of morphogenesis for each structure is discussed. We describe also the metastatic process during which a single cancer cell of ameboid phenotype moves due to intercalation in healthy epithelial tissue, then divides and undergoes a ME transition with the appearance of a secondary tumor.
-
Influence of random malignant cell motility on growing tumor front stability
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 225-232Views (last year): 5. Citations: 7 (RSCI).Chemotaxis plays an important role in morphogenesis and processes of structure formation in nature. Both unicellular organisms and single cells in tissue demonstrate this property. In vitro experiments show that many types of transformed cell, especially metastatic competent, are capable for directed motion in response usually to chemical signal. There is a number of theoretical papers on mathematical modeling of tumour growth and invasion using Keller-Segel model for the chemotactic motility of cancer cells. One of the crucial questions for using the chemotactic term in modelling of tumour growth is a lack of reliable quantitative estimation of its parameters. The 2-D mathematical model of tumour growth and invasion, which takes into account only random cell motility and convective fluxes in compact tissue, has showed that due to competitive mechanism tumour can grow toward sources of nutrients in absence of chemotactic cell motility.
-
Description of the rapid invasion processes by means of the kinetic model
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 829-838Recently many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we investigate the nazi Germany invasion in Poland, France and USSR from the kinetic theory point of view. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial uniform initial conditions. The solution of the problem is given in the form of the traveling wave and the propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be obtained in terms of the quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data.
Keywords: kinetic theory, models of aggression.Views (last year): 4. Citations: 1 (RSCI). -
A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.
-
Mathematical modeling of low invasive tumor growth with account of inactivation of vascular endothelial growth factor by antiangiogenic drug
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 361-374Views (last year): 4. Citations: 1 (RSCI).A mathematical model of tumor growth in tissue taking into account angiogenesis and antiangiogenic therapy is developed. In the model the convective flows in tissue are considered as well as individual motility of tumor cells. It is considered that a cell starts to migrate if the nutrient concentration falls lower than the critical level and returns into proliferation in the region with high nutrient concentration. Malignant cells in the state of metabolic stress produce vascular endothelial growth factor (VEGF), stimulating tumor angiogenesis, which increases the nutrient supply. In this work an antiangiogenic drug which bounds irreversibly to VEGF, converting it to inactive form, is modeled. Numerical analysis of influence of antiangiogenic drug concentration and efficiency on tumor rate of growth and structure is performed. It is shown that antiangiogenic therapy can decrease the growth of low-invasive tumor, but is not able to stop it completely.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"