All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Optimization of a hull form for decrease ship resistance to movement
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 57-65Views (last year): 10. Citations: 1 (RSCI).Optimization of hull lines for the minimum resistance to movement is a problem of current interest in ship hydrodynamics. In practice, lines design is still to some extent an art. The usual approaches to decrease the ship resistance are based on the model experiment and/or CFD simulation, following the trial and error method. The paper presents a new method of in-detail hull form design based on the wave-based optimization approach. The method provides systematic variation of the hull geometrical form, which corresponds to alteration of longitudinal distribution of the hull volume, while its vertical volume distribution is fixed or highly controlled. It’s well known from the theoretical studies that the vertical distribution can't be optimized by condition of minimum wave resistance, thus it can be neglected for the optimization procedures. The method efficiency was investigated by application to the foreship of KCS, the well-known test object from the workshop Gothenburg-2000. The variations of the longitudinal distribution of the volume were set on the sectional area curve as finite volume increments and then transferred to the lines plan with the help of special frame transformation methods. The CFD towing simulations were carried out for the initial hull form and the six modified variants. According to the simulation results, examined modifications caused the resistance increments in the range 1.3–6.5 %. Optimization process was underpinned with the respective data analysis based on the new hypothesis, according to which, the resistance increments caused by separate longitudinal segments of hull form meet the principle of superposition. The achieved results, which are presented as the optimum distribution of volume present in the optimized designed hull form, which shows the interesting characteristics that its resistance has decrease by 8.9 % in respect to initial KCS hull form. Visualization of the wave patterns showed an attenuation of the transversal wave components, and the intensification of the diverging wave components.
-
On the boundaries of optimally designed elastoplastic structures
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 503-515Views (last year): 8.This paper studies minimum volume elastoplastic bodies. One part of the boundary of every reviewed body is fixed to the same space points while stresses are set for the remaining part of the boundary surface (loaded surface). The shape of the loaded surface can change in space but the limit load factor calculated based on the assumption that the bodies are filled with elastoplastic medium must not be less than a fixed value. Besides, all varying bodies are supposed to have some type of a limited volume sample manifold inside of them.
The following problem has been set: what is the maximum number of cavities (or holes in a two-dimensional case) that a minimum volume body (plate) can have under the above limitations? It is established that in order to define a mathematically correct problem, two extra conditions have to be met: the areas of the holes must be bigger than the small constant while the total length of the internal hole contour lines within the optimum figure must be minimum among the varying bodies. Thus, unlike most articles on optimum design of elastoplastic structures where parametric analysis of acceptable solutions is done with the set topology, this paper looks for the topological parameter of the design connectivity.
The paper covers the case when the load limit factor for the sample manifold is quite large while the areas of acceptable holes in the varying plates are bigger than the small constant. The arguments are brought forward that prove the Maxwell and Michell beam system to be the optimum figure under these conditions. As an example, microphotographs of the standard biological bone tissues are presented. It is demonstrated that internal holes with large areas cannot be a part of the Michell system. At the same the Maxwell beam system can include holes with significant areas. The sufficient conditions are given for the hole formation within the solid plate of optimum volume. The results permit generalization for three-dimensional elastoplastic structures.
The paper concludes with the setting of mathematical problems arising from the new problem optimally designed elastoplastic systems.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"