All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
The analysis of images in control systems of unmanned automobiles on the base of energy features model
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 369-376Views (last year): 31. Citations: 1 (RSCI).The article shows the relevance of research work in the field of creating control systems for unmanned vehicles based on computer vision technologies. Computer vision tools are used to solve a large number of different tasks, including to determine the location of the car, detect obstacles, determine a suitable parking space. These tasks are resource intensive and have to be performed in real time. Therefore, it is important to develop effective models, methods and tools that ensure the achievement of the required time and accuracy for use in unmanned vehicle control systems. In this case, the choice of the image representation model is important. In this paper, we consider a model based on the wavelet transform, which makes it possible to form features characterizing the energy estimates of the image points and reflecting their significance from the point of view of the contribution to the overall image energy. To form a model of energy characteristics, a procedure is performed based on taking into account the dependencies between the wavelet coefficients of various levels and the application of heuristic adjustment factors for strengthening or weakening the influence of boundary and interior points. On the basis of the proposed model, it is possible to construct descriptions of images their characteristic features for isolating and analyzing, including for isolating contours, regions, and singular points. The effectiveness of the proposed approach to image analysis is due to the fact that the objects in question, such as road signs, road markings or car numbers that need to be detected and identified, are characterized by the relevant features. In addition, the use of wavelet transforms allows to perform the same basic operations to solve a set of tasks in onboard unmanned vehicle systems, including for tasks of primary processing, segmentation, description, recognition and compression of images. The such unified approach application will allow to reduce the time for performing all procedures and to reduce the requirements for computing resources of the on-board system of an unmanned vehicle.
-
Signal and noise calculation at Rician data analysis by means of combining maximum likelihood technique and method of moments
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 511-523Views (last year): 11.The paper develops a new mathematical method of the joint signal and noise calculation at the Rice statistical distribution based on combing the maximum likelihood method and the method of moments. The calculation of the sough-for values of signal and noise is implemented by processing the sampled measurements of the analyzed Rician signal’s amplitude. The explicit equations’ system has been obtained for required signal and noise parameters and the results of its numerical solution are provided confirming the efficiency of the proposed technique. It has been shown that solving the two-parameter task by means of the proposed technique does not lead to the increase of the volume of demanded calculative resources if compared with solving the task in one-parameter approximation. An analytical solution of the task has been obtained for the particular case of small value of the signal-to-noise ratio. The paper presents the investigation of the dependence of the sought for parameters estimation accuracy and dispersion on the quantity of measurements in experimental sample. According to the results of numerical experiments, the dispersion values of the estimated sought-for signal and noise parameters calculated by means of the proposed technique change in inverse proportion to the quantity of measurements in a sample. There has been implemented a comparison of the accuracy of the soughtfor Rician parameters’ estimation by means of the proposed technique and by earlier developed version of the method of moments. The problem having been considered in the paper is meaningful for the purposes of Rician data processing, in particular, at the systems of magnetic-resonance visualization, in devices of ultrasonic visualization, at optical signals’ analysis in range-measuring systems, at radar signals’ analysis, as well as at solving many other scientific and applied tasks that are adequately described by the Rice statistical model.
-
Molecular-dynamic simulation of water vapor interaction with suffering pores of the cylindrical type
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 493-501Views (last year): 9.Theoretical and experimental investigations of water vapor interaction with porous materials are carried out both at the macro level and at the micro level. At the macro level, the influence of the arrangement structure of individual pores on the processes of water vapor interaction with porous material as a continuous medium is studied. At the micro level, it is very interesting to investigate the dependence of the characteristics of the water vapor interaction with porous media on the geometry and dimensions of the individual pore.
In this paper, a study was carried out by means of mathematical modelling of the processes of water vapor interaction with suffering pore of the cylindrical type. The calculations were performed using a model of a hybrid type combining a molecular-dynamic and a macro-diffusion approach for describing water vapor interaction with an individual pore. The processes of evolution to the state of thermodynamic equilibrium of macroscopic characteristics of the system such as temperature, density, and pressure, depending on external conditions with respect to pore, were explored. The dependence of the evolution parameters on the distribution of the diffusion coefficient in the pore, obtained as a result of molecular dynamics modelling, is examined. The relevance of these studies is due to the fact that all methods and programs used for the modelling of the moisture and heat conductivity are based on the use of transport equations in a porous material as a continuous medium with known values of the transport coefficients, which are usually obtained experimentally.
-
Regimes with exacerbation in the history of mankind or memories of the future
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 931-947The article describes the modes with the exacerbation of social and biological history. The analysis of the possible causes of the sharp acceleration of biological and social processes in certain historical periods is carried out. Using mathematical modeling shows that hyperbolic trends in social and biological evolution may be the result of transitional processes in periods of expansion of ecological niches. Accelerating biological speciation due to the fact that its earlier life change inhabitancy, making it more diverse, saturating the organic, thus creating favourable conditions for the emergence of new species. In the social history of the expansion of ecological niches associated with technological revolutions, of which the most important were: Neolithic revolution — the transition from appropriating economy to producing economy (10 thousand years ago), “urban revolution” — a shift from the Neolithic epoch to the bronze epoch (5 thousand years ago), the “axial age” — transition to the development of iron tools (2.5 thousand years ago), the industrial revolution — the transition from manual labor to machine production (200 years ago). All of these technological revolutions have been accompanied by dramatic population growth, changes in social and political spheres. So, observed in the last century, hyperbolic nature of some demographic, economic growth and other indicators of world dynamics is a consequence of the transition process, which began as a result of the industrial revolution and to prepare for the transition of the society to a new stage of its development. Singularity point of hyperbolic trend shows the end of the initial phase of the process and marks the transition to the final stage. The mathematical model describing the demographic and economic changes in the era of change is proposed. It is shown that a direct analogue of the contemporary situation in this sense is the “axial age” (since 8 century BC to the beginning of our era). The existence of this analogy allows you to see into the future by studying the past.
-
Mathematical model of the biometric iris recognition system
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 629-639Automatic recognition of personal identity by biometric features is based on unique peculiarities or characteristics of people. Biometric identification process consist in making of reference templates and comparison with new input data. Iris pattern recognition algorithms presents high accuracy and low identification errors percent on practice. Iris pattern advantages over other biometric features are determined by its high degree of freedom (nearly 249), excessive density of unique features and constancy. High recognition reliability level is very important because it provides search in big databases. Unlike one-to-one check mode that is applicable only to small calculation count it allows to work in one-to-many identification mode. Every biometric identification system appears to be probabilistic and qualitative characteristics description utilizes such parameters as: recognition accuracy, false acceptance rate and false rejection rate. These characteristics allows to compare identity recognition methods and asses the system performance under any circumstances. This article explains the mathematical model of iris pattern biometric identification and its characteristics. Besides, there are analyzed results of comparison of model and real recognition process. To make such analysis there was carried out the review of existing iris pattern recognition methods based on different unique features vector. The Python-based software package is described below. It builds-up probabilistic distributions and generates large test data sets. Such data sets can be also used to educate the identification decision making neural network. Furthermore, synergy algorithm of several iris pattern identification methods was suggested to increase qualitative characteristics of system in comparison with the use of each method separately.
-
Numerical simulation of two-dimensional magnetic skyrmion structures
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1051-1061Magnetic systems, in which due to competition between the direct Heisenberg exchange and the Dzyaloshinskii –Moriya interaction, magnetic vortex structures — skyrmions appear, were studied using the Metropolis algorithm.
The conditions for the nucleation and stable existence of magnetic skyrmions in two-dimensional magnetic films in the frame of the classical Heisenberg model were considered in the article. A thermal stability of skyrmions in a magnetic film was studied. The processes of the formation of various states in the system at different values of external magnetic fields were considered, various phases into which the Heisenberg spin system passes were recognized. The authors identified seven phases: paramagnetic, spiral, labyrinth, spiralskyrmion, skyrmion, skyrmion-ferromagnetic and ferromagnetic phases, a detailed analysis of the configurations is given in the article.
Two phase diagrams were plotted: the first diagram shows the behavior of the system at a constant $D$ depending on the values of the external magnetic field and temperature $(T, B)$, the second one shows the change of the system configurations at a constant temperature $T$ depending on the magnitude of the Dzyaloshinskii – Moriya interaction and external magnetic field: $(D, B)$.
The data from these numerical experiments will be used in further studies to determine the model parameters of the system for the formation of a stable skyrmion state and to develop methods for controlling skyrmions in a magnetic film.
-
Numerical model of transport in problems of instabilities of the Earth’s low-latitude ionosphere using a two-dimensional monotonized Z-scheme
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1011-1023The aim of the work is to study a monotone finite-difference scheme of the second order of accuracy, created on the basis of a generalization of the one-dimensional Z-scheme. The study was carried out for model equations of the transfer of an incompressible medium. The paper describes a two-dimensional generalization of the Z-scheme with nonlinear correction, using instead of streams oblique differences containing values from different time layers. The monotonicity of the obtained nonlinear scheme is verified numerically for the limit functions of two types, both for smooth solutions and for nonsmooth solutions, and numerical estimates of the order of accuracy of the constructed scheme are obtained.
The constructed scheme is absolutely stable, but it loses the property of monotony when the Courant step is exceeded. A distinctive feature of the proposed finite-difference scheme is the minimality of its template. The constructed numerical scheme is intended for models of plasma instabilities of various scales in the low-latitude ionospheric plasma of the Earth. One of the real problems in the solution of which such equations arise is the numerical simulation of highly nonstationary medium-scale processes in the earth’s ionosphere under conditions of the appearance of the Rayleigh – Taylor instability and plasma structures with smaller scales, the generation mechanisms of which are instabilities of other types, which leads to the phenomenon F-scattering. Due to the fact that the transfer processes in the ionospheric plasma are controlled by the magnetic field, it is assumed that the plasma incompressibility condition is fulfilled in the direction transverse to the magnetic field.
-
Models of population process with delay and the scenario for adaptive resistance to invasion
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 147-161Changes in abundance for emerging populations can develop according to several dynamic scenarios. After rapid biological invasions, the time factor for the development of a reaction from the biotic environment will become important. There are two classic experiments known in history with different endings of the confrontation of biological species. In Gause’s experiments with ciliates, the infused predator, after brief oscillations, completely destroyed its resource, so its $r$-parameter became excessive for new conditions. Its own reproductive activity was not regulated by additional factors and, as a result, became critical for the invader. In the experiments of the entomologist Uchida with parasitic wasps and their prey beetles, all species coexisted. In a situation where a population with a high reproductive potential is regulated by several natural enemies, interesting dynamic effects can occur that have been observed in phytophages in an evergreen forest in Australia. The competing parasitic hymenoptera create a delayed regulation system for rapidly multiplying psyllid pests, where a rapid increase in the psyllid population is allowed until the pest reaches its maximum number. A short maximum is followed by a rapid decline in numbers, but minimization does not become critical for the population. The paper proposes a phenomenological model based on a differential equation with a delay, which describes a scenario of adaptive regulation for a population with a high reproductive potential with an active, but with a delayed reaction with a threshold regulation of exposure. It is shown that the complication of the regulation function of biotic resistance in the model leads to the stabilization of the dynamics after the passage of the minimum number by the rapidly breeding species. For a flexible system, transitional regimes of growth and crisis lead to the search for a new equilibrium in the evolutionary confrontation.
-
Analysing the impact of migration on background social strain using a continuous social stratification model
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.
-
Two-dimensional modeling of influence on detached supersonic gas flow caused by its turning by means of rapid local heating
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1283-1300The influence of the process of initiating a rapid local heat release near surface streamlined by supersonic gas (air) flow on the separation region that occurs during a fast turn of the flow was investigated. This surface consists of two planes that form obtuse angle when crossing, so that when flowing around the formed surface, the supersonic gas flow turns by a positive angle, which forms an oblique shock wave that interacts with the boundary layer and causes flow separation. Rapid local heating of the gas above the streamlined surface simulates long spark discharge of submicrosecond duration that crosses the flow. The gas heated in the discharge zone interacts with the separation region. The flow can be considered two-dimensional, so the numerical simulation is carried out in a two-dimensional formulation. Numerical simulation was carried out for laminar regime of flow using the sonicFoam solver of the OpenFOAM software package.
The paper describes a method for constructing a two-dimensional computational grid using hexagonal cells. A study of grid convergence has been carried out. A technique is given for setting the initial profiles of the flow parameters at the entrance to the computational domain, which makes it possible to reduce the computation time by reducing the number of computational cells. A method for non-stationary simulation of the process of rapid local heating of a gas is described, which consists in superimposing additional fields of increased pressure and temperature values calculated from the amount of energy deposited in oncoming supersonic gas flow on the corresponding fields of values obtained in the stationary case. The parameters of the energy input into the flow corresponding to the parameters of the electric discharge process, as well as the parameters of the oncoming flow, are close to the experimental values.
During analyzing numerical simulation data it was found that the initiation of rapid local heating leads to the appearance of a gas-dynamic perturbation (a quasi-cylindrical shock wave and an unsteady swirling flow), which, when interacting with the separation region, leads to a displacement of the separation point downstream. The paper considers the question of the influence of the energy spent on local heating of the gas, and of the position on the streamlined surface of the place of heating relative to the separation point, on the value of its maximum displacement.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"