Результаты поиска по 'rotation':
Найдено статей: 41
  1. Yakushevich L.V.
    Biomechanics of DNA: rotational oscillations of bases
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 319-328

    In this paper we study the rotational oscillations of the nitrous bases forming a central pair in a short DNA fragment consisting of three base pairs. A simple mechanical analog of the fragment where the bases are imitated by pendulums and the interactions between pendulums — by springs, has been constructed. We derived Lagrangian of the model system and the nonlinear equations of motions. We found solutions in the homogeneous case when the fragment considered consists of identical base pairs: Adenine-Thymine (AT- pair) or Guanine-Cytosine (GC-pair). The trajectories of the model system in the configuration space were also constructed.

    Views (last year): 3. Citations: 2 (RSCI).
  2. Ashryatov A.A., Prytkov S.V., Syromyasov A.O.
    Calculation of spatial distribution of differently oriented LEDs
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 577-584

    New method for calculation of spatial light distribution of differently oriented LEDs is proposed. The main idea is combination of coordinate systems associated with these light sources. Unlike other conventional approaches, this method can be applied to the emitters with light distribution with arbitrary symmetry or without symmetry at all.

    Views (last year): 3. Citations: 2 (RSCI).
  3. Savin S.I., Vorochaeva L.I., Kurenkov V.V.
    Mathematical modelling of tensegrity robots with rigid rods
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 821-830

    In this paper, we address the mathematical modeling of robots based on tensegrity structures. The pivotal property of such structures is the forming elements working only for compression or tension, which allows the use of materials and structural solutions that minimize the weight of the structure while maintaining its strength.

    Tensegrity structures hold several properties important for collaborative robotics, exploration and motion tasks in non-deterministic environments: natural compliance, compactness for transportation, low weight with significant impact resistance and rigidity. The control of such structures remains an open research problem, which is associated with the complexity of describing the dynamics of such structures.

    We formulate an approach for describing the dynamics of such structures, based on second-order dynamics of the Cartesian coordinates of structure elements (rods), first-order dynamics for angular velocities of rods, and first-order dynamics for quaternions that are used to describe the orientation of rods. We propose a numerical method for solving these dynamic equations. The proposed methods are implemented in the form of a freely distributed mathematical package with open source code.

    Further, we show how the provided software package can be used for modeling the dynamics and determining the operating modes of tensegrity structures. We present an example of a tensegrity structure moving in zero gravity with three rigid rods and nine elastic elements working in tension (cables), showing the features of the dynamics of the structure in reaching the equilibrium position. The range of initial conditions for which the structure operates in the normal mode is determined. The results can be directly used to analyze the nature of passive dynamic movements of the robots based on a three-link tensegrity structure, considered in the paper; the proposed modeling methods and the developed software are suitable for modeling a significant variety of tensegrity robots.

  4. Popov D.I.
    Calibration of an elastostatic manipulator model using AI-based design of experiment
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1535-1553

    This paper demonstrates the advantages of using artificial intelligence algorithms for the design of experiment theory, which makes possible to improve the accuracy of parameter identification for an elastostatic robot model. Design of experiment for a robot consists of the optimal configuration-external force pairs for the identification algorithms and can be described by several main stages. At the first stage, an elastostatic model of the robot is created, taking into account all possible mechanical compliances. The second stage selects the objective function, which can be represented by both classical optimality criteria and criteria defined by the desired application of the robot. At the third stage the optimal measurement configurations are found using numerical optimization. The fourth stage measures the position of the robot body in the obtained configurations under the influence of an external force. At the last, fifth stage, the elastostatic parameters of the manipulator are identified based on the measured data.

    The objective function required to finding the optimal configurations for industrial robot calibration is constrained by mechanical limits both on the part of the possible angles of rotation of the robot’s joints and on the part of the possible applied forces. The solution of this multidimensional and constrained problem is not simple, therefore it is proposed to use approaches based on artificial intelligence. To find the minimum of the objective function, the following methods, also sometimes called heuristics, were used: genetic algorithms, particle swarm optimization, simulated annealing algorithm, etc. The obtained results were analyzed in terms of the time required to obtain the configurations, the optimal value, as well as the final accuracy after applying the calibration. The comparison showed the advantages of the considered optimization techniques based on artificial intelligence over the classical methods of finding the optimal value. The results of this work allow us to reduce the time spent on calibration and increase the positioning accuracy of the robot’s end-effector after calibration for contact operations with high loads, such as machining and incremental forming.

  5. Rozenblat G.M., Yashina M.V.
    Numerical and analytical study of the motion of Maxwell’s pendulum
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 123-136

    The article considers the problem of the stability of the vertical position of a Maxwell pendulum during its periodic up-down movements. Two types of transition movements are considered: “stop” — occurs when the body of the pendulum in its highest position on the string (during its “standard” upward movement) stops for a moment; “two-link pendulum” — occurs when the entire thread from the body of the pendulum is selected (the lowest position of the body on the thread during its “standard” downward movement), and the body is forced to rotate relative to the thread around the point of its attachment to the body. It is shown that for any values of the pendulum parameters, this position is unstable in the sense that oscillations of the thread around the vertical of finite amplitude occur in the system for arbitrarily small initial deviations. In addition, it has been established that no shock phenomena occur during the movement of the Maxwell pendulum, and the model of this pendulum itself, with the values of its parameters often used in the literature, is incorrect according to Hadamard. In this work, it is shown that the vertical position of the pendulum threads during the indicated oscillatory movements of the body along the threads for any non-degenerate values of the parameters of the Maxwell pendulum is always unstable in the above sense. Moreover, this instability is caused precisely by transitional movements of the 2nd type. In this work, it is further shown that no jumps in speeds or accelerations (due to which shocks or “jerks” in the tension of the threads can occur) do not occur during the indicated movements of the Maxwell pendulum model under consideration. In our opinion, the “jerks” observed in the experiments are due to other reasons, for example, the technical imperfection of the instruments on which the experiments were carried out.

  6. Priputina I.V., Frolova G.G., Shanin V.N.
    Substantiation of optimum planting schemes for forest plantations: a computer experiment
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 333-343

    The article presents the results of computer simulations aimed to assess the influence of tree spatial locations (planting schemes) on the productivity and the dynamics of soil fertility in forest plantations. The growth of aspen (Populus tremula L.) in plantations with short rotation (30 years) was simulated in the EFIMOD system of models with the soil and climatic data matching forested lands in the Mari El Republic. The outcome reveals that higher biomass rates, increase in soil organic matter stocks, and the minimal loss of soil nitrogen can be obtained when the distance between trees in the row equals 1–4 m and 4–6 м in aisles.

    Views (last year): 2. Citations: 2 (RSCI).
  7. Pogrebnaya A.F.
    Synthesis of ATP by F1-ATPase in stochastic model
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 217-223

    The paper continues our series of papers [1-4] devoted to the development of mathematical model on rotation of F1-AТPase molecular motor. Here it has been considered the synthesis of ATP induced by external force applied to the rotor.

    Views (last year): 2. Citations: 1 (RSCI).
  8. Kovalenko I.B., Dreval V.D., Fedorov V.A., Kholina E.G., Gudimchuk N.B.
    Microtubule protofilament bending characterization
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 435-443

    This work is devoted to the analysis of conformational changes in tubulin dimers and tetramers, in particular, the assessment of the bending of microtubule protofilaments. Three recently exploited approaches for estimating the bend of tubulin protofilaments are reviewed: (1) measurement of the angle between the vector passing through the H7 helices in $\alpha$ and $\beta$ tubulin monomers in the straight structure and the same vector in the curved structure of tubulin; (2) measurement of the angle between the vector, connecting the centers of mass of the subunit and the associated GTP nucleotide, and the vector, connecting the centers of mass of the same nucleotide and the adjacent tubulin subunit; (3) measurement of the three rotation angles of the bent tubulin subunit relative to the straight subunit. Quantitative estimates of the angles calculated at the intra- and inter-dimer interfaces of tubulin in published crystal structures, calculated in accordance with the three metrics, are presented. Intra-dimer angles of tubulin in one structure, measured by the method (3), as well as measurements by this method of the intra-dimer angles in different structures, were more similar, which indicates a lower sensitivity of the method to local changes in tubulin conformation and characterizes the method as more robust. Measuring the angle of curvature between H7-helices (method 1) produces somewhat underestimated values of the curvature per dimer. Method (2), while at first glance generating the bending angle values, consistent the with estimates of curved protofilaments from cryoelectron microscopy, significantly overestimates the angles in the straight structures. For the structures of tubulin tetramers in complex with the stathmin protein, the bending angles calculated with all three metrics varied quite significantly for the first and second dimers (up to 20% or more), which indicates the sensitivity of all metrics to slight variations in the conformation of tubulin dimers within these complexes. A detailed description of the procedures for measuring the bending of tubulin protofilaments, as well as identifying the advantages and disadvantages of various metrics, will increase the reproducibility and clarity of the analysis of tubulin structures in the future, as well as it will hopefully make it easier to compare the results obtained by various scientific groups.

  9. Bobkov V.G., Abalakin I.V., Kozubskaya T.K.
    Method for prediction of aerodynamic characteristics of helicopter rotors based on edge-based schemes in code NOISEtte
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1097-1122

    The paper gives a detailed description of the developed methods for simulating the turbulent flow around a helicopter rotor and calculating its aerodynamic characteristics. The system of Reynolds-averaged Navier – Stokes equations for a viscous compressible gas closed by the Spalart –Allmaras turbulence model is used as the basic mathematical model. The model is formulated in a non-inertial rotating coordinate system associated with a rotor. To set the boundary conditions on the surface of the rotor, wall functions are used.

    The numerical solution of the resulting system of differential equations is carried out on mixed-element unstructured grids including prismatic layers near the surface of a streamlined body.The numerical method is based on the original vertex-centered finite-volume EBR schemes. A feature of these schemes is their higher accuracy which is achieved through the use of edge-based reconstruction of variables on extended quasi-onedimensional stencils, and a moderate computational cost which allows for serial computations. The methods of Roe and Lax – Friedrichs are used as approximate Riemann solvers. The Roe method is corrected in the case of low Mach flows. When dealing with discontinuities or solutions with large gradients, a quasi-one-dimensional WENO scheme or local switching to a quasi-one-dimensional TVD-type reconstruction is used. The time integration is carried out according to the implicit three-layer second-order scheme with Newton linearization of the system of difference equations. To solve the system of linear equations, the stabilized conjugate gradient method is used.

    The numerical methods are implemented as a part of the in-house code NOISEtte according to the two-level MPI–OpenMP parallel model, which allows high-performance computations on meshes consisting of hundreds of millions of nodes, while involving hundreds of thousands of CPU cores of modern supercomputers.

    Based on the results of numerical simulation, the aerodynamic characteristics of the helicopter rotor are calculated, namely, trust, torque and their dimensionless coefficients.

    Validation of the developed technique is carried out by simulating the turbulent flow around the Caradonna – Tung two-blade rotor and the KNRTU-KAI four-blade model rotor in hover mode mode, tail rotor in duct, and rigid main rotor in oblique flow. The numerical results are compared with the available experimental data.

  10. Zharkova V.V., Schelyaev A.E., Fisher J.V.
    Numerical simulation of sportsman's external flow
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 331-344

    Numerical simulation of moving sportsman external flow is presented. The unique method is developed for obtaining integral aerodynamic characteristics, which were the function of the flow regime (i.e. angle of attack, flow speed) and body position. Individual anthropometric characteristics and moving boundaries of sportsman (or sports equipment) during the race are taken into consideration.

    Numerical simulation is realized using FlowVision CFD. The software is based on the finite volume method, high-performance numerical methods and reliable mathematical models of physical processes. A Cartesian computational grid is used by FlowVision, the grid generation is a completely automated process. Local grid adaptation is used for solving high-pressure gradient and object complex shape. Flow simulation process performed by solutions systems of equations describing movement of fluid and/or gas in the computational domain, including: mass, moment and energy conservation equations; state equations; turbulence model equations. FlowVision permits flow simulation near moving bodies by means of computational domain transformation according to the athlete shape changes in the motion. Ski jumper aerodynamic characteristics are studied during all phases: take-off performance in motion, in-run and flight. Projected investigation defined simulation method, which includes: inverted statement of sportsman external flow development (velocity of the motion is equal to air flow velocity, object is immobile); changes boundary of the body technology defining; multiple calculations with the national team member data projecting. The research results are identification of the main factors affected to jumping performance: aerodynamic forces, rotating moments etc. Developed method was tested with active sportsmen. Ski jumpers used this method during preparations for Sochi Olympic Games 2014. A comparison of the predicted characteristics and experimental data shows a good agreement. Method versatility is underlined by performing swimmer and skater flow simulation. Designed technology is applicable for sorts of natural and technical objects.

    Views (last year): 29.
Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"