All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Substantiation of optimum planting schemes for forest plantations: a computer experiment
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 333-343Views (last year): 2. Citations: 2 (RSCI).The article presents the results of computer simulations aimed to assess the influence of tree spatial locations (planting schemes) on the productivity and the dynamics of soil fertility in forest plantations. The growth of aspen (Populus tremula L.) in plantations with short rotation (30 years) was simulated in the EFIMOD system of models with the soil and climatic data matching forested lands in the Mari El Republic. The outcome reveals that higher biomass rates, increase in soil organic matter stocks, and the minimal loss of soil nitrogen can be obtained when the distance between trees in the row equals 1–4 m and 4–6 м in aisles.
-
Modeling of calcium dynamics in soil organic layers
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110Views (last year): 1.Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.
-
Models of soil organic matter dynamics: problems and perspectives
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 391-399Soil as a complex multifunctional open system is one of the most difficult object for modeling. In spite of serious achievements in the soil system modeling, existed models do not reflect all aspects and processes of soil organic matter mineralization and humification. The problems and “hot spots” in the modeling of the dynamics of soil organic matter and biophylous elements were identified on a base of creation and wide implementation of ROMUL and EFIMOD models. The following aspects are discussed: further theoretical background; improving the structure of models; preparation and uncertainty of the initial data; inclusion of all soil biota (microorganisms, micro- and meso-fauna) as factors of humification; impact of soil mineralogy on C and N dynamics; hydro-thermal regime and organic matter distribution in whole soil profile; vertical and horizontal migration of soil organic matter. An effective feedback from modellers to experimentalists is necessary to solve the listed problems.
Keywords: mathematic model, soil organic matter.Views (last year): 2. Citations: 3 (RSCI).
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"