All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Mathematical modeling of hydrodynamics problems of the Azov Sea on a multiprocessor computer system
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 647-672The article is devoted to modeling the shallow water hydrodynamic processes using the example of the Azov Sea. The article presents a mathematical model of the hydrodynamics of a shallow water body, which allows one to calculate three-dimensional fields of the velocity vector of movement of the aquatic environment. Application of regularizers according to B.N.Chetverushkin in the continuity equation led to a change in the method of calculating the pressure field, based on solving the wave equation. A discrete finite-difference scheme has been constructed for calculating pressure in an area whose linear vertical dimensions are significantly smaller than those in horizontal coordinate directions, which is typical for the geometry of shallow water bodies. The method and algorithm for solving grid equations with a tridiagonal preconditioner are described. The proposed method is used to solve grid equations that arise when calculating pressure for the three-dimensional problem of hydrodynamics of the Azov Sea. It is shown that the proposed method converges faster than the modified alternating triangular method. A parallel implementation of the proposed method for solving grid equations is presented and theoretical and practical estimates of the acceleration of the algorithm are carried out taking into account the latency time of the computing system. The results of computational experiments for solving problems of hydrodynamics of the Sea of Azov using the hybrid MPI + OpenMP technology are presented. The developed models and algorithms were used to reconstruct the environmental disaster that occurred in the Sea of Azov in 2001 and to solve the problem of the movement of the aquatic environment in estuary areas. Numerical experiments were carried out on the K-60 hybrid computing cluster of the Keldysh Institute of Applied Mathematics of Russian Academy of Sciences.
-
Topological microstructure analysis of the TIP4P-EW water model
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 415-426Views (last year): 1. Citations: 1 (RSCI).Molecular dynamics (MD) simulations of rigid water model TIP4P-EW at ambient conditions were carried out. Delaunay’s simplexes were considered as structural elements of liquid water. Topological criterion which allows to identify the water microstructure in snapshot of MD cell was used to allocate its dense part. Geometrical analysis of water Delaunay’s simplexes indicates their strong flatness in comparison with a regular tetrahedron that is fundamentally different from the results for dense part of simple liquids. The statistics of TIP4P-EW water clusters was investigated depending on their cardinality and connectivity. It is similar to the statistics for simple liquids and the structure of this dense part is also a fractal surface consisting of the free edges of the Delaunay’s simplexes.
-
Anharmonic vibrational resonances in small water clusters
Computer Research and Modeling, 2009, v. 1, no. 3, pp. 321-336Views (last year): 1. Citations: 4 (RSCI).Numerical calculations of structures and vibrational spectra of small water clusters are performed by solution of the molecular Schrodinger equation in the density functional theory framework using B3LYP and X3LYP hybrid functionals. Spectral features and evolution of hydrogen bond properties in clusters with their size increasing are discussed. The vibrotational Hamiltonian parameters and Fermi and Darling-Dennison anharmonic resonances in small water oligomers are determined. Obtained results may be used in quantum mechanics/molecular dynamics simulations of water and processes in active site of enzyme.
-
Analysis of Brownian and molecular dynamics trajectories of to reveal the mechanisms of protein-protein interactions
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 723-738The paper proposes a set of fairly simple analysis algorithms that can be used to analyze a wide range of protein-protein interactions. In this work, we jointly use the methods of Brownian and molecular dynamics to describe the process of formation of a complex of plastocyanin and cytochrome f proteins in higher plants. In the diffusion-collision complex, two clusters of structures were revealed, the transition between which is possible with the preservation of the position of the center of mass of the molecules and is accompanied only by a rotation of plastocyanin by 134 degrees. The first and second clusters of structures of collisional complexes differ in that in the first cluster with a positively charged region near the small domain of cytochrome f, only the “lower” plastocyanin region contacts, while in the second cluster, both negatively charged regions. The “upper” negatively charged region of plastocyanin in the first cluster is in contact with the amino acid residue of lysine K122. When the final complex is formed, the plastocyanin molecule rotates by 69 degrees around an axis passing through both areas of electrostatic contact. With this rotation, water is displaced from the regions located near the cofactors of the molecules and formed by hydrophobic amino acid residues. This leads to the appearance of hydrophobic contacts, a decrease in the distance between the cofactors to a distance of less than 1.5 nm, and further stabilization of the complex in a position suitable for electron transfer. Characteristics such as contact matrices, rotation axes during the transition between states, and graphs of changes in the number of contacts during the modeling process make it possible to determine the key amino acid residues involved in the formation of the complex and to reveal the physicochemical mechanisms underlying this process.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"