Semiclassical approximation for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation

 pdf (222K)  / List of references

Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation are found in explicit
form.

Keywords: nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation, asymptotic solution, Einstein— Ehrenfest system
Citation in English: Levchenko E.A., Trifonov A.Y., Shapovalov A.V. Semiclassical approximation for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation // Computer Research and Modeling, 2015, vol. 7, no. 2, pp. 205-219
Citation in English: Levchenko E.A., Trifonov A.Y., Shapovalov A.V. Semiclassical approximation for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation // Computer Research and Modeling, 2015, vol. 7, no. 2, pp. 205-219
DOI: 10.20537/2076-7633-2015-7-2-205-219
Views (last year): 4.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"