Global bifurcation analysis of a quartic predator–prey model

 pdf (575K)  / Annotation

List of references:

  1. Н. Н. Баутин, Е. А. Леонтович. Методы и приемы качественного исследования динамических систем на плоскости. — М: Наука, 1990.
  2. А. Р. Бахтеев, Г. В. Губенкова. Математическая модель иммунитета при поражении ВИЧ / Математика. Компьютер. Образование. — 2000. — Т. 7. — С. 703–709.
  3. Ю. М. Романовский, Н. В. Степанова, Д. С. Чернавский. Математическая биофизика. — М: Наука, 1984.
  4. A. D. Bazykin. Nonlinear dynamics of interacting populations. — Singapore: World Scientific, 1998. — MathSciNet: MR1635219.
  5. H. W. Broer, V. Naudot, R. Roussarie, K. Saleh. Dynamics of a predator-prey model with nonmonotonic response function // Discrete and Continuous Dynamical Systems. Ser. A. — 2007. — V. 18. — P. 221–251. — DOI: 10.3934/dcds.2007.18.221. — MathSciNet: MR2291897.
  6. H. W. Broer, V. A. Gaiko. Global qualitative analysis of a quartic ecological model // Nonlinear Analysis. — 2010. — V. 72, no. 2. — P. 628–634. — DOI: 10.1016/j.na.2009.07.004. — MathSciNet: MR2579331.
  7. V. A. Gaiko. Global bifurcation theory and Hilbert’s sixteenth problem. — Boston: Kluwer, 2003. — MathSciNet: MR2023976.
  8. C. S. Holling. Some characteristics of simple types of predation and parasitism // Canadian Entomology. — 1959. — V. 91. — P. 385–398. — DOI: 10.4039/Ent91385-7.
  9. L. Perko. Differential equations and dynamical systems. — New York: Springer, 2002. — MathSciNet: MR1418638.
  10. H. Zhu, S. A. Campbell, G. S. K. Wolkowicz. Bifurcation analysis of a predator-prey system with nonmonotonic functional response // SIAM Journal of Applied Mathematics. — 2002. — V. 63. — P. 636–682. — DOI: 10.1137/S0036139901397285. — MathSciNet: MR1951954.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"