Homology modeling of the spatial structure of HydSL hydrogenase from purple sulphur bacterium Thiocapsa roseopersicina BBS

 pdf (1197K)  / Annotation

List of references:

  1. Н. А. Зорин. Ингибирование гидрогеназы Thiocapsa roseopersicina различными соединениями // Биохимия. — 1986. — Т. 51, № 5. — С. 770–774.
  2. Н. А. Зорин, И. Н. Гоготов. Стабильность гидрогеназы из пурпурной серобактерии Thiocapsa roseopersicina // Биохимия. — 1982. — Т. 47, № 5. — С. 827–833.
  3. А. А. Цыганков, Е. А. Минаков, Н. А. Зорин, К. С. Гостева, О. Г. Воронин, А. А. Карякин. Об измерении pH-зависимости гидрогеназ // Биохимия. — 2007. — Т. 72, № 9. — С. 1189–1195.
  4. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman. Basic local alignment search tool // J. Mol. Biol. — 1990. — V. 215, no. 3. — P. 403–410. — DOI: 10.1016/S0022-2836(05)80360-2.
  5. V. B. Chen, W. Bryan Arendall III, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, D. C. Richardsom. MolProbity: all-atom structure validation for macromolecular crystallography // Acta Crystallographica. — 2010. — V. 66, no. 1. — P. 12–21.
  6. I. N. Gogotov, N. A. Zorin, L. T. Serebryakova, E. N. Kondratieva. The properties of hydrogenase from Thiocapsa roseopersicina // Biochim. Biophys. Acta. — 1978. — V. 523. — P. 335–343. — DOI: 10.1016/0005-2744(78)90036-0.
  7. Y. Higuchi, T. Yagi, N. Yasuoka. Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis // Structure. — 1997. — V. 5, no. 12. — P. 1671–1680. — DOI: 10.1016/S0969-2126(97)00313-4.
  8. A. M. Klibanov, N. O. Kaplan, M. D. Karmen. Thermal stabilities of membrane-bound, solubilized, and artificially immobilized hydrogenase from Chromatium vinosum // Arch. Biochem. Biophys. — 1980. — V. 199, no. 2. — P. 545–549. — DOI: 10.1016/0003-9861(80)90312-4.
  9. E. Krieger, R. L. Jr. Dunbrack, R. W. Hooft, B. Krieger. Assignment of protonation states in proteins and ligands: combining pKa prediction with hydrogen bonding network optimization // Methods Mol. Biol. — 2012. — V. 819. — P. 405–421. — DOI: 10.1007/978-1-61779-465-0_25.
  10. T. V. Laurinavichene, G. Rákhely, Kovács K. L., A. A. Tsygankov. The effect of sulfur compounds on H2 evolution/consumption reactions, mediated by various hydrogenases, in the purple sulfur bacterium, Thiocapsa roseopersicina // Arch. Microbiol. — 2007. — V. 188, no. 4. — P. 403–410. — DOI: 10.1007/s00203-007-0260-7.
  11. Y. Nicolet, C. Cavazza, J. C. Fontecilla-Camps. Fe-only hydrogenases: structure, function and evolution // J. Inorg. Biochem. — 2002. — V. 91. — P. 1–8. — DOI: 10.1016/S0162-0134(02)00392-6.
  12. H. Ogata, P. Kellers, W. Lubitz. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state) // J. Mol. Biol. — 2010. — V. 402, no. 2. — P. 428–444. — DOI: 10.1016/j.jmb.2010.07.041.
  13. H. Ogata, W. Lubitz, Y. Higuchi. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism // Dalton Transactions. — 2009. — no. 37. — P. 7577–7587. — DOI: 10.1039/b903840j.
  14. L. S. Palágyi-Mészáros, J. Maróti, D. Latinovics, T. Balogh, E. Klement, K. F. Medzihradszky, G. Rákhely, K. L.. Kovács. Electron-transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS // FEBS J. — 2009. — V. 286, no. 1. — P. 164–174.
  15. A. Sali, T. L. Blundell. Comparative protein modelling by satisfaction of spatial restraints // J. Mol. Biol. — 1993. — V. 234, no. 3. — P. 779–815. — DOI: 10.1006/jmbi.1993.1626.
  16. M. Y. Shen, A. Sali. Statistical potential for assessment and prediction of protein structures // Protein Sci. — 2006. — V. 15, no. 11. — P. 2507–2524. — DOI: 10.1110/ps.062416606.
  17. M. B. Sherman, E. V. Orlova, E. A. Smirnova, S. Hovmöller, N. A. Zorin. Three-dimensional structure of the nickel-containing hydrogenase from Thiocapsa roseopersicina // J. Bacteriol. — 1991. — V. 173, no. 8. — P. 2576–2580. — DOI: 10.1128/jb.173.8.2576-2580.1991.
  18. A. Szilágyi, K. L. Kovács, G. Rákhely, P. Závodszky. Homology modeling reveals the structural background of the striking difference in thermal stability between two related [NiFe] hydrogenases // J. Mol. Model. — 2002. — V. 8, no. 2. — P. 58–64. — DOI: 10.1007/s00894-001-0071-8.
  19. R. K. Thauer. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture // Microbiology. — 1998. — V. 144. — P. 2377. — DOI: 10.1099/00221287-144-9-2377.
  20. K. G. Tina, R. Bhadra, N. Srinivasan. PIC: Protein Interactions Calculator // Nucleic Acids Research. — 2007. — V. 35. — P. W473–W476. — Web Server issue. — DOI: 10.1093/nar/gkm423.
  21. P. M. Vignais, B. Billoud. Occurrence, classification, and biological function of hydrogenases: an overview // Chem. Rev. — 2007. — V. 107. — P. 4206–4272. — DOI: 10.1021/cr050196r.
  22. A. Volbeda, E. Garcin, C. Piras, A. L. de Lacey, V.M. Fernandez, E. C. Hatchikian, M. Frey, J. C. Fontecilla-Camps. Structure of the [NiFe] Hydrogenase Active Site: Evidence for Biologically Uncommon Fe Ligands // J. Am. Chem. Soc. — 1996. — V. 118, no. 51. — P. 12989–12996. — DOI: 10.1021/ja962270g.
  23. D. Xu, Y. Zhang. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field // Proteins. — 2012. — V. 80. — P. 1715–1735.
  24. T. Yagi, K. Kimura, H. Daidoji, F. Sakai, S. Tamura. Properties of purified hydrogenase from the particulate fraction of Desulfovibrio vulgaris, Miyazaki // J. Biochem. — 1976. — V. 79, no. 3. — P. 661–671. — DOI: 10.1093/oxfordjournals.jbchem.a131111.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"