All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Global bifurcation analysis of a rational Holling system
pdf (375K)
/ Annotation
List of references:
- Методы и приемы качественного исследования динамических систем на плоскости. — М: Наука, 1990.
- Methods and ways of the qualitative analysis of dynamical systems in a plane. — Moscow: Nauka, 1990. — in Russian. — MathSciNet: MR1126908. , .
, . - Глобальный бифуркационный анализ квартичной модели «хищник–жертва» // Компьютерные исследования и моделирование. — 2011. — Т. 3, № 2. — С. 161–171. — DOI: 10.20537/2076-7633-2011-3-2-161-171
- Global bifurcation analysis of a quartic predator–prey model // Computer Research and Modeling. — 2011. — V. 3, no. 2. — P. 161–171. — in Russian. — DOI: 10.20537/2076-7633-2011-3-2-161-171 .
. - Nonlinear dynamics of interacting populations. — Singapore: World Scientific, 1998. — MathSciNet: MR1635219. .
- Dynamics of a predator-prey model with non-monotonic response function // Discr. Contin. Dynam. Syst. Ser. A. — 2007. — V. 18. — P. 221–251. — DOI: 10.3934/dcds.2007.18.221. — MathSciNet: MR2291897. — zbMATH: Zbl 1129.92061. .
- Global qualitative analysis of a quartic ecological model // Nonlinear Anal. — 2010. — V. 72, no. 2. — P. 628–634. — DOI: 10.1016/j.na.2009.07.004. — MathSciNet: MR2579331. — zbMATH: Zbl 1364.34070. , .
- Global bifurcation theory and Hilbert’s sixteenth problem. — Boston: Kluwer Academic Publishers, 2003. — MathSciNet: MR2023976. — zbMATH: Zbl 1156.34316. .
- Multiple limit cycle bifurcations of the FitzHugh–Nagumo neuronal model // Nonlinear Anal. — 2011. — V. 74, no. 18. — P. 532–542. — DOI: 10.1016/j.na.2011.08.017. — MathSciNet: MR2833733. .
- On limit cycles surrounding a singular point // Differ. Equ. Dyn. Syst. — 2012. — V. 20, no. 3. — P. 329–337. — DOI: 10.1007/s12591-012-0136-4. — MathSciNet: MR2965375. — zbMATH: Zbl 1278.34030. .
- Limit cycle bifurcations of a general Liénard system with polynomial restoring and damping functions // Int. J. Dyn. Syst. Differ. Equ. — 2012. — V. 4, no. 3. — P. 242–254. — MathSciNet: MR2988914. — zbMATH: Zbl 1266.34050. .
- The applied geometry of a general Liénard polynomial system // Appl. Math. Letters. — 2012. — V. 25, no. 12. — P. 2327–2331. — DOI: 10.1016/j.aml.2012.06.026. — MathSciNet: MR2967838. — zbMATH: Zbl 1264.34060. .
- Limit cycle bifurcations of a special Liénard polynomial system // Adv. Dyn. Syst. Appl. — 2014. — V. 9, no. 1. — P. 109–123. — MathSciNet: MR3162137. .
- Maximum number and distribution of limit cycles in the general Liénard polynomial system // Adv. Dyn. Syst. Appl. — 2015. — V. 10, no. 2. — P. 177–188. — MathSciNet: MR3450925. .
- Some characteristics of simple types of predation and parasitism // Can. Entomolog. — 1959. — V. 91. — P. 385–398. — DOI: 10.4039/Ent91385-7. .
- Bifurcation analysis of a predator-prey system with generalized Holling type III functional response // J. Dyn. Diff. Equations. — 2008. — V. 20. — P. 535–571. — DOI: 10.1007/s10884-008-9102-9. — MathSciNet: MR2429436. — zbMATH: Zbl 1160.34047. , , .
- Differential equations and dynamical systems. — New York: Springer, 2002. — MathSciNet: MR1083151. .
- Bifurcation analysis of a predator-prey system with nonmonotonic functional response // SIAM J. Appl. Math. — 2002. — V. 63. — P. 636–682. — DOI: 10.1137/S0036139901397285. — MathSciNet: MR1951954. — zbMATH: Zbl 1036.34049. , , .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science