Global bifurcation analysis of a rational Holling system

 pdf (375K)  / Annotation

List of references:

  1. Н. Н. Баутин, Е. А. Леонтович. Методы и приемы качественного исследования динамических систем на плоскости. — М: Наука, 1990.
    • N. N. Bautin, E. A. Leontovich. Methods and ways of the qualitative analysis of dynamical systems in a plane. — Moscow: Nauka, 1990. — in Russian. — MathSciNet: MR1126908.
  2. В. А. Гайко. Глобальный бифуркационный анализ квартичной модели «хищник–жертва» // Компьютерные исследования и моделирование. 2011. — Т. 3, № 2. — С. 161–171. — DOI: 10.20537/2076-7633-2011-3-2-161-171
    • V. A. Gaiko. Global bifurcation analysis of a quartic predator–prey model // Computer Research and Modeling. 2011. — V. 3, no. 2. — P. 161–171. — in Russian.DOI: 10.20537/2076-7633-2011-3-2-161-171
  3. A. D. Bazykin. Nonlinear dynamics of interacting populations. — Singapore: World Scientific, 1998. — MathSciNet: MR1635219.
  4. H. W. Broer. Dynamics of a predator-prey model with non-monotonic response function // Discr. Contin. Dynam. Syst. Ser. A. 2007. — V. 18. — P. 221–251. — DOI: 10.3934/dcds.2007.18.221. — MathSciNet: MR2291897. — zbMATH: Zbl 1129.92061.
  5. H. W. Broer, V. A. Gaiko. Global qualitative analysis of a quartic ecological model // Nonlinear Anal. 2010. — V. 72, no. 2. — P. 628–634. — DOI: 10.1016/j.na.2009.07.004. — MathSciNet: MR2579331. — zbMATH: Zbl 1364.34070.
  6. V. A. Gaiko. Global bifurcation theory and Hilbert’s sixteenth problem. — Boston: Kluwer Academic Publishers, 2003. — MathSciNet: MR2023976. — zbMATH: Zbl 1156.34316.
  7. V. A. Gaiko. Multiple limit cycle bifurcations of the FitzHugh–Nagumo neuronal model // Nonlinear Anal. 2011. — V. 74, no. 18. — P. 532–542. — DOI: 10.1016/j.na.2011.08.017. — MathSciNet: MR2833733.
  8. V. A. Gaiko. On limit cycles surrounding a singular point // Differ. Equ. Dyn. Syst. 2012. — V. 20, no. 3. — P. 329–337. — DOI: 10.1007/s12591-012-0136-4. — MathSciNet: MR2965375. — zbMATH: Zbl 1278.34030.
  9. V. A. Gaiko. Limit cycle bifurcations of a general Liénard system with polynomial restoring and damping functions // Int. J. Dyn. Syst. Differ. Equ. 2012. — V. 4, no. 3. — P. 242–254. — MathSciNet: MR2988914. — zbMATH: Zbl 1266.34050.
  10. V. A. Gaiko. The applied geometry of a general Liénard polynomial system // Appl. Math. Letters. 2012. — V. 25, no. 12. — P. 2327–2331. — DOI: 10.1016/j.aml.2012.06.026. — MathSciNet: MR2967838. — zbMATH: Zbl 1264.34060.
  11. V. A. Gaiko. Limit cycle bifurcations of a special Liénard polynomial system // Adv. Dyn. Syst. Appl. 2014. — V. 9, no. 1. — P. 109–123. — MathSciNet: MR3162137.
  12. V. A. Gaiko. Maximum number and distribution of limit cycles in the general Liénard polynomial system // Adv. Dyn. Syst. Appl. 2015. — V. 10, no. 2. — P. 177–188. — MathSciNet: MR3450925.
  13. C. S. Holling. Some characteristics of simple types of predation and parasitism // Can. Entomolog. 1959. — V. 91. — P. 385–398. — DOI: 10.4039/Ent91385-7.
  14. Y. Lamontagne, C. Coutu, C. Rousseau. Bifurcation analysis of a predator-prey system with generalized Holling type III functional response // J. Dyn. Diff. Equations. 2008. — V. 20. — P. 535–571. — DOI: 10.1007/s10884-008-9102-9. — MathSciNet: MR2429436. — zbMATH: Zbl 1160.34047.
  15. L. Perko. Differential equations and dynamical systems. — New York: Springer, 2002. — MathSciNet: MR1083151.
  16. H. Zhu, S. A. Campbell, G. S. K. Wolkowicz. Bifurcation analysis of a predator-prey system with nonmonotonic functional response // SIAM J. Appl. Math. 2002. — V. 63. — P. 636–682. — DOI: 10.1137/S0036139901397285. — MathSciNet: MR1951954. — zbMATH: Zbl 1036.34049.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"