Traffic flow speed prediction on transportation graph with convolutional neural networks

 pdf (137K)  / Annotation

List of references:

  1. M. Abadi, A. Agarwal, P. Barham, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. — 2015. — Software available from tensorflow.org.
  2. M. S. Ahmed, A. R. Cook. Analysis of freeway traffic time-series data by using Box – Jenkins techniques // Transportation Research Record. — 1979. — no. 722. — P. 116.
  3. S. Bengio, O. Vinyals, N. Jaitly, et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. — 2015. — no. jun. — P. 1–9.
  4. Caltrans Performance Measurement. — State of California. — http://pems.dot.ca.gov/.
  5. M. Castro-Neto, Y. S. Jeong, M. K. Jeong, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions // Expert Systems with Applications. — 2009. — V. 36, no. 3. — P. 6164–6173. — Part 2. — DOI: 10.1016/j.eswa.2008.07.069.
  6. Q. Chen, X. Song, H. Yamada, et al. Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident Inference / Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-16). — 2016. — P. 338–344.
  7. K. Cho, B. van Merrienboer, C. Gulcehre, et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. — 2014.
  8. G. A. Davis, N. L. Nihan. Nonparametric regression and short-term freeway traffic forecasting. — 1991. — V. 117, no. 2. — P. 178–188.
  9. M. Defferrard, X. Bresson, P. Vandergheynst. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. — 2016. — no. Nips.
  10. K. Greff, R. K. Srivastava, J. Koutnik, et al. LSTM: A Search Space Odyssey // IEEE Transactions on Neural Networks and Learning Systems. — 2017. — V. 28, no. 10. — P. 2222–2232. — DOI: 10.1109/TNNLS.2016.2582924. — MathSciNet: MR3709742.
  11. S. Hochreiter, J. Schmidhuber. Long Short-Term Memory // Neural Computation. — 1997. — V. 9, no. 8. — P. 1735–1780. — DOI: 10.1162/neco.1997.9.8.1735.
  12. W. Huang, G. Song, H. Hong, et al. Deep architecture for traffic flow prediction: Deep belief networks with multitask learning // IEEE Transactions on Intelligent Transportation Systems. — 2014. — V. 15, no. 5. — P. 2191–2201. — DOI: 10.1109/TITS.2014.2311123.
  13. M. Jun, M. Ying. Research of Traffic Flow Forecasting Based on Neural Network // 2008 Second International Symposium on Intelligent Information Technology Application. — 2008. — V. 2, no. 973. — P. 451–456.
  14. J. Kim, M. El-Khamy, J. Lee. Residual LSTM: Design of a deep recurrent architecture for distant speech recognition / Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. — 2017. — V. 2017, no. Augus. — P. 1591–1595.
  15. D. P. Kingma, J. L. Ba. Adam: A Method for Stochastic Optimization. — 2015. — P. 1–15.
  16. T. N. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks / International Conference on Learning Representations (ICLR). — 2017.
  17. Y. LeCun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition // Proceedings of the IEEE. — 1998. — V. 86, no. 11. — P. 2278–2323. — DOI: 10.1109/5.726791.
  18. S. Li, W. Li, C. Cook, et al. Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN. — 2018. — no. 1.
  19. Y. Li, R. Yu, C. Shahabi, et al. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecating. — 2017. — P. 1–12.
  20. M. J. Lighthill, G. B. Whitham. On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 1955. — V. 229, no. 1178. — P. 317–345. — DOI: 10.1098/rspa.1955.0089. — MathSciNet: MR0072606.
  21. M. Lippi, M. Bertini, P. Frasconi. Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning // IEEE Transactions on Intelligent Transportation Systems. — 2013. — V. 14, no. 2. — P. 871–882. — DOI: 10.1109/TITS.2013.2247040.
  22. Y. Lv, Y. Duan, W. Kang, et al. Traffic Flow Prediction with Big Data: A Deep Learning Approach // IEEE Transactions on Intelligent Transportation Systems. — 2015. — V. 16, no. 2. — P. 865–873. — MathSciNet: MR3337615.
  23. P. I. Richards. Shock Waves on the Highway // Operations Research. — 1956. — V. 4, no. 1. — P. 42–51. — DOI: 10.1287/opre.4.1.42. — MathSciNet: MR0075522.
  24. Y. Seo, M. Defferrard, P. Vandergheynst, et al. Structured Sequence Modeling with Graph Convolutional Recurrent Networks. — 2016. — no. 2013. — P. 1–10.
  25. X. Shi, Zh. Chen, H. Wang, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. — 2015. — P. 1–12.
  26. I. Sutskever, O. Vinyals, V. Le Quoc. Sequence to Sequence Learning with Neural Networks. — 2014. — P. 1–9.
  27. B. M. Williams, L. A. Hoel. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results // Journal of Transportation Engineering. — 2003. — V. 129, no. 6. — P. 664–672.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"