Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries

 pdf (25255K)  / Annotation

List of references:

  1. В. А. Бирюков, В. А. Миряха, И. Б. Петров, Н. И. Хохлов. Моделирование распространения упругих волн в геологической среде: сравнение результатов трех численных методов // Ж. вычисл. матем. и матем. физ. — 2016. — Т. 56, № 6. — С. 1104–1114.
    • V. A. Biryukov, V. A. Miryakha, I. B. Petrov, N. I. Khokhlov. Simulation of elastic wave propagation in geological media: intercomparison of three numerical methods // Computational Mathematics and Mathematical Physics. — 2016. — V. 56, no. 6. — P. 1086–1095. — DOI: 10.1134/S0965542516060087. — MathSciNet: MR3540583. — ads: 2016CMMPh..56.1086B.
    • V. A. Biryukov, V. A. Miryakha, I. B. Petrov, N. I. Khokhlov. Modelirovanie rasprostraneniya uprugikh voln v geologicheskoi srede: sravnenie rezul’tatov trekh chislennykh metodov // Zh. vychisl. matem. i matem. fiz. — 2016. — V. 56, no. 6. — P. 1104–1114. — in Russian.
  2. В. М. Голубев, Р. И. Гилязутдинов, И. Б. Петров, Н. И. Хохлов, А. В. Васюков. Моделирование динамических процессов в трехмерных слоистых трещиноватых средах с использованием сеточно-характеристического численного метода // Прикладная механика и техническая физика. — 2017. — Т. 58, № 3. — С. 190–197.
    • V. I. Golubev, R. I. Gilyazutdinov, I. B. Petrov, N. I. Khokhlov, A. V. Vasyukov. Simulation of dynamic processes in three-dimensional layered fractured media with the use of the grid-characteristic numerical method // Journal of Applied Mechanics and Technical Physics. — 2017. — V. 58, no. 3. — P. 539–545. — DOI: 10.1134/S0021894417030191. — MathSciNet: MR3766289. — ads: 2017JAMTP..58..539G.
    • V. M. Golubev, R. I. Gilyazutdinov, I. B. Petrov, N. I. Khokhlov, A. V. Vasyukov. Modelirovanie dinamicheskikh protsessov v trekhmernykh sloistykh treshchinovatykh sredakh s ispol’zovaniem setochno-kharakteristicheskogo chislennogo metoda // Prikladnaya mekhanika i tekhnicheskaya fizika. — 2017. — V. 58, no. 3. — P. 190–197. — in Russian.
  3. В. И. Голубев, И. Б. Петров, Н. И. Хохлов. Компактные сеточно-характеристические схемы повышенного порядка точности для трёхмерного линейного уравнения переноса // Матем. моделирование. — 2016. — Т. 28, № 2. — С. 123–132.
    • V. I. Golubev, I. B. Petrov, N. I. Khokhlov. Compact grid-characteristic schemes of higher orders of accuracy for a 3D linear transport equation // Mathematical Models and Computer Simulations. — 2016. — V. 8, no. 5. — P. 577–584. — DOI: 10.1134/S2070048216050082. — MathSciNet: MR3551995.
    • V. I. Golubev, I. B. Petrov, N. I. Khokhlov. Kompaktnye setochno-kharakteristicheskie skhemy povyshennogo poryadka tochnosti dlya trekhmernogo lineinogo uravneniya perenosa // Matem. modelirovanie. — 2016. — V. 28, no. 2. — P. 123–132. — in Russian. — Math-Net: Mi eng/mm3704.
  4. К. М. Магомедов, А. С. Холодов. Сеточно-характеристические численные методы. — М: Наука, 1988.
    • K. M. Magomedov, A. S. Kholodov. Grid-characteristic numerical methods. — Moscow: Nauka, 1988. — in Russian. — MathSciNet: MR0961845.
  5. И. Б. Петров, А. Г. Тормасов, А. С. Холодов. Об использовании гибридизированных сеточно-характеристических схем для численного решения трехмерных задач динамики деформируемого твердого тела // Ж. вычисл. матем. и матем. физ. — 1990. — Т. 30, № 8. — С. 1237–1244.
    • I. B. Petrov, A. G. Tormasov, A. S. Kholodov. On the use of hybrid grid-characteristic schemes for the numerical solution of three-dimensional problems in the dynamics of a deformable solid // USSR Computational Mathematics and Mathematical Physics. — 1990. — V. 30, no. 4. — P. 191–196. — DOI: 10.1016/0041-5553(90)90062-W. — MathSciNet: MR1074168.
    • I. B. Petrov, A. G. Tormasov, A. S. Kholodov. Ob ispol’zovanii gibridizirovannykh setochno-kharakteristicheskikh skhem dlya chislennogo resheniya trekhmernykh zadach dinamiki deformiruemogo tverdogo tela // Zh. vychisl. matem. i matem. fiz. — 1990. — V. 30, no. 8. — P. 1237–1244. — in Russian. — MathSciNet: MR1121941.
  6. И. Б. Петров, А. С. Холодов. О регуляризации разрывных численных решений уравнений гиперболического типа // Ж. вычисл. матем. и матем. физ. — 1984. — Т. 24, № 8. — С. 1172–1188.
    • I. B. Petrov, A. S. Kholodov. Regularization of discontinuous numerical solutions of equations of hyperbolic type // USSR Computational Mathematics and Mathematical Physics. — 1984. — V. 24, no. 4. — P. 128–138. — DOI: 10.1016/0041-5553(84)90245-3. — MathSciNet: MR0760244.
    • I. B. Petrov, A. S. Kholodov. O regulyarizatsii razryvnykh chislennykh reshenii uravnenii giperbolicheskogo tipa // Zh. vychisl. matem. i matem. fiz. — 1984. — V. 24, no. 8. — P. 1172–1188. — in Russian.
  7. А. С. Холодов, Я. А. Холодов. О критериях монотонности разностных схем для уравнений гиперболического типа // Ж. вычисл. матем. и матем. физ. — 2006. — Т. 46, № 9. — С. 1638–1667.
    • A. S. Kholodov, Y. A. Kholodov. Monotonicity criteria for difference schemes designed for hyperbolic equations // Comput. Math. and Math. Phys. — 2006. — V. 46, no. 9. — P. 1560–1588. — DOI: 10.1134/S0965542506090089. — MathSciNet: MR2287663.
    • A. S. Kholodov, Ya. A. Kholodov. O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa // Zh. vychisl. matem. i matem. fiz. — 2006. — V. 46, no. 9. — P. 1638–1667. — in Russian.
  8. E. Gabriel, et al. Open MPI: Goals, concept, and design of a next generation MPI implementation / European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting. — Berlin, Heidelberg: Springer, 2004. — P. 97–104.
  9. A. V. Favorskaya, I. B. Petrov. Grid-Characteristic Method / Innovations in Wave Processes Modelling and Decision Making. — Cham: Springer, 2018. — P. 117–160. — MathSciNet: MR3586146.
  10. M. Kaser, M. Dumbser. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — I. The two-dimensional isotropic case with external source terms // Geophysical Journal International. — 2006. — V. 166, no. 2. — P. 855–877. — DOI: 10.1111/j.1365-246X.2006.03051.x. — ads: 2006GeoJI.166..855K.
  11. N. Khokhlov, A. Ivanov, M. Zhdanov, I. Petrov, E. Ryabinkin. Applying OpenCL Technology for Modelling Seismic Processes Using Grid-Characteristic Methods / International Conference on Distributed Computer and Communication Networks. — Cham: Springer, 2016. — P. 577–588.
  12. N. Khokhlov, N. Yavich, M. Malovichko, I. Petrov. Solution of large-scale seismic modeling problems // Procedia Computer Science. — 2015. — V. 66. — P. 191–199. — DOI: 10.1016/j.procs.2015.11.023.
  13. D. Komatitsch. Fluid-solid coupling on a cluster of GPU graphics cards for seismic wave propagation // Academie des Sciences. Comptes Rendus. Mecanique. — 2011. — V. 339, no. 2–3. — P. 125–135. — DOI: 10.1016/j.crme.2010.11.007. — ads: 2011CRMec.339..125K.
  14. D. Komatitsch, J.-P. Vilotte, R. Vai, J. M. Castillo-Covarrubias, F. J. S´anchez-Sesma. The spectral element method for elastic wave equations — Application to 2-D and 3-D seismic problems // International Journal for numerical methods in engineering. — 1999. — V. 45, no. 9. — P. 1139–1164. — DOI: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T. — ads: 1999IJNME..45.1139K.
  15. R. J. LeVeque. Finite volume methods for hyperbolic problems. — Cambridge university press, 2002. — V. 31. — MathSciNet: MR1925043.
  16. W. Liu, F. Wang, H. Zhou. Parallel Seismic Modeling Based on OpenMP+AVX and Optimization Strategy // Journal of Earth Science. — 2018. — P. 1–6. — ads: 2018JAESc.151....1L.
  17. R. Martin, D. Komatitsch, C. Blitz, N. Le Goff. Simulation of seismic wave propagation in an asteroid based upon an unstructured MPI spectral-element method: blocking and non-blocking communication strategies / International Conference on High Performance Computing for Computational Science. — Berlin, Heidelberg: Springer, 2008. — P. 350–363.
  18. P. Micikevicius. 3D finite difference computation on GPUs using CUDA / Proceedings of 2nd workshop on general purpose processing on graphics processing units. — ACM, 2009. — P. 79–84.
  19. P. Moczo, J. Kristek, M. Galis, P. Pazak, M. Balazovjech. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion // Acta Physica Slovaca. Reviews and Tutorials. — 2010. — V. 57, no. 2. — P. 177–406. — ads: 2007AcPSl..57..177M.
  20. D. Mu, P. Chen, L. Wang. Accelerating the discontinuous Galerkin method for seismic wave propagation simulations using multiple GPUs with CUDA and MPI // Earthquake Science. — 2013. — V. 26, no. 6. — P. 377–393. — DOI: 10.1007/s11589-013-0047-7. — ads: 2013EaSci..26..377M.
  21. T. Nakamura, R. Tanaka, T. Yabec, K. Takizawa. Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique // Journal of computational physics. — 2001. — V. 174, no. 1. — P. 171–207. — DOI: 10.1006/jcph.2001.6888. — MathSciNet: MR1869674. — ads: 2001JCoPh.174..171N.
  22. J. Virieux. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method // GEOPHYSICS. — 1986. — V. 51, no. 4. — P. 889–901. — DOI: 10.1190/1.1442147. — ads: 1986Geop...51..889V.
  23. O. Y. Voinov, V. I. Golubev, I. B. Petrov. Elastic imaging using multiprocessor computer systems // CEUR Workshop Proceedings. — 2016. — V. 1787. — P. 491–495.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"