All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
The global rate of convergence for optimal tensor methods in smooth convex optimization
pdf (180K)
/ Annotation
List of references:
- Безградиентные двухточечные методы решения задач стохастической негладкой выпуклой оптимизации при наличии малых шумов не случайной природы // Автоматика и Телемеханика. — 2018. — № 9. — (в печати). — https://arxiv.org/ftp/arxiv/papers/1701/1701.03821.pdf . — (дата обращения: 03.09.2018).
- Gradientfree two-points optimal method for non smooth stochastic convex optimization problem with additional small noise // Automation and Remote Control. — 2018. — no. 9. — (in print). — https://arxiv.org/ftp/arxiv/papers/1701/1701.03821.pdf. — (accessed: 03.09.2018). — in Russian. , , , .
, , , . - Методы оптимизации. — М: МЦНМО, 2011. — Т. 2. — 433 с.
- Methods of Optimization. — Moscow: MTSNMO, 2011. — V. 2. — 433 p. — in Russian. .
. - Ускоренные спуски по случайному направлению с неевклидовой прокс-структурой // Автоматика и Телемеханика. — 2019. — (в печати). — https://arxiv.org/pdf/1710.00162.pdf. — (дата обращения: 03.09.2018).
- Accelerated Directional Search with non-Euclidean prox-structure // Automation and Remote Control. — 2019. — (in print). — https://arxiv.org/pdf/1710.00162.pdf. — (accessed: 03.09.2018). — in Russian. , , .
, , . - Современные численные методы оптимизации. Метод универсального градиентного спуска. — М: МФТИ, 2018. — 166 с.
- Universal gradient descent. — Moscow: MIPT, 2018. — 166 p. — in Russian. .
. - Гипотеза об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков // Компьютерные исследования и моделирование. — 2018. — Т. 10, № 3. — С. 305–314. — DOI: 10.20537/2076-7633-2018-10-3-305-314
- Hypothesis of optimal estimates of the rate of convergence of numerical methods of convex optimization of high orders // Computer Research and Modeling. — 2018. — V. 10, no. 3. — P. 305–314. — in Russian. — DOI: 10.20537/2076-7633-2018-10-3-305-314. , .
, . - Исчисление конечных разностей. — М: ГИФМЛ, 1959. — 400 с.
- Calculus of finite differences. — Moscow: GIFML, 1959. — 400 p. — in Russian. — MathSciNet: MR0342890. .
. - Оптимизация и быстрое автоматическое дифференцирование. — М: ВЦ РАН, 2013. — 144 с. — http://www.ccas.ru/personal/evtush/p/198.pdf. — (дата обращения: 03.09.2018).
- Optimization and fast automatic differentiation. — Moscow: VC RAN, 2013. — 144 p. — http://www.ccas.ru/personal/evtush/p/198.pdf. — (accessed: 03.09.2018). — in Russian. .
. - Численные методы безусловной оптимизации и решения нелинейных уравнений. — М: Мир, 1988. — 440 с.
- Numerical methods for unconditional optimization and nonlinear equations. — Moscow: Mir, 1988. — 440 p. — in Russian. — MathSciNet: MR0956645. , .
, . - Численные методы оптимизации. — М: Физматлит, 2005. — 304 с.
- Numerical Optimization Methods. — Moscow: Fizmatlit, 2005. — 304 p. — in Russian. — MathSciNet: MR2071073. , .
, . - Математическое программирование. — М: Наука, 1986. — 288 с.
- Mathematical programming. — Moscow: Nauka, 1986. — 288 p. — in Russian. — MathSciNet: MR0411559. .
. - Алгоритмы. Построение и анализ:. — пер. с англ. — М: Издательский дом Вильямс, 2009.
- Introduction to algorithms. — Moscow: Izdatelskii dom Vilyams, 2009. — in Russian. — MathSciNet: MR2572804. , , , .
, , , . - Сложность задач и эффективность методов оптимизации. — М: Наука, 1979.
- Problem Complexity and method Efficiency in Optimization. — Moscow: Nauka, 1979. — in Russian. — MathSciNet: MR0702836. , .
, . - Введение в выпуклую оптимизацию. — М: МЦНМО, 2010. — 262 с.
- Introduction to convex optimization. — Moscow: MTSNMO, 2010. — 262 p. — in Russian. .
. - К вопросу об алгоритмах приближенного вычисления минимума выпуклой функции по ее значениям // Мат. заметки. — 1996. — Т. 59, № 1. — С. 95–102.
- On the question of algorithms for the approximate calculation of a minimum of a convex function from its values // Math. notes. — 1996. — V. 59, no. 1. — P. 95–102. — in Russian. — DOI: 10.1007/BF02312467. — Math-Net: Mi eng/mzm1697. — MathSciNet: MR1391825. .
. - Oracle complexity of second-order methods for smooth convex optimization // Mathematical Programming. — 2017. — P. 1–34. , , .
- Estimate sequence methods: extensions and approximations. — 2009. — http://www.optimization-online.org/DB_FILE/2009/08/2372.pdf. — (accessed: 03.09.2018). .
- Convex optimization: algorithms and complexity // Foundations and Trends in Machine Learning. — 2015. — V. 8, no. 3–4. — P. 231–357. — DOI: 10.1561/2200000050. .
- Trust region methods. — Philadelphia: SIAM, 2000. — MathSciNet: MR1774899. , , .
- Randomized Similar Triangles Method: A Unifying Framework for Accelerated Randomized Optimization Methods (Coordinate Descent, Directional Search, Derivative-Free Method). — 2017. — https://arxiv.org/pdf/1707.08486.pdf. — (accessed: 03.09.2018). , , .
- Second-order methods with cubic regularization under inexact information. — 2017. — https://arxiv.org/pdf/1710.05782.pdf. — (accessed: 03.09.2018). , , .
- Regularized Newton methods for minimizing functions with H ¨older continuous Hessian // SIAM J. Optim. — 2017. — V. 27, no. 1. — P. 478–506. — DOI: 10.1137/16M1087801. — MathSciNet: MR3625807. , .
- Accelerated Bregman proximal gradient method for relatively smooth functions. — 2018. — https://arxiv.org/pdf/1808.03045.pdf. — (accessed: 03.09.2018). , , .
- A faster cutting plane method and its implications for combinatorial and convex optimization. — 2015. — https://arxiv.org/pdf/1508.04874.pdf . — (accessed: 03.09.2018). — MathSciNet: MR3473356. , , .
- Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice // Journal of Machine Learning Research. — 2018. — V. 18. — P. 1–54. — 212. — MathSciNet: MR3827100. — ads: 2018JSR...135....1L. , , .
- An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods // SIAM Journal on Optimization. — 2013. — V. 23, no. 2. — P. 1092–1125. — DOI: 10.1137/110833786. — MathSciNet: MR3063151. , .
- Lectures on modern convex optimization analysis, algorithms, and engineering applications. — Philadelphia: SIAM, 2015. — http://www2.isye.gatech.edu/�..nemirovs/Lect_ModConvOpt.pdf. — (accessed: 03.09.2018). .
- Accelerating the cubic regularization of Newton’s method on convex problems // Math. Prog., Ser. A. — 2008. — V. 112. — P. 159–181. — DOI: 10.1007/s10107-006-0089-x. — MathSciNet: MR2327005. .
- Implementable tensor methods in unconstrained convex optimization. — Universit´e catholique de Louvain, Center for Operations Research and Econometrics (CORE), 2018. — CORE discussion paper 2018/05. .
- Lectures on convex optimization. — Springer, 2018. — MathSciNet: MR2142598. .
- Minimizing functions with bounded variation of subgradients. — 2005. — 13 p. — CORE Discussion Papers 2005/79. — http://webdoc.sub.gwdg.de/ebook/serien/e/CORE/dp2005_79.pdf. — (accessed : 03.09.2018). .
- Cubic regularization of Newton method and its global performance // Mathematical Programming. — 2006. — V. 108, no. 1. — P. 177–205. — DOI: 10.1007/s10107-006-0706-8. — MathSciNet: MR2229459. , .
- Random gradient-free minimization of convex functions // Foundations of Computational Mathematics. — 2017. — V. 17, no. 2. — P. 527–566. — DOI: 10.1007/s10208-015-9296-2. — MathSciNet: MR3627456. , .
- Numerical optimization. — Springer, 2006. , .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science