All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Modeling of anisotropic convection for the binary fluid in porous medium
pdf (195K)
/ Annotation
List of references:
- Влияние анизотропии на конвекцию теплопроводной жидкости в пористой среде и косимметрия задачи Дарси // Изв. РАН. МЖГ. — 2017. — № 1. — С. 53–61.
- Anisotropy effect on the convection of a heat-conducting fluid in a porous medium and cosymmetry of the darcy problem // Fluid Dynamics. — 2017. — V. 52, no. 1. — P. 49–57. — DOI: 10.1134/S0015462817010057. — MathSciNet: MR3619494. , .
, . - Численное моделирование конвективных движений в анизотропной пористой среде и сохранение косимметрии // Ж. вычисл. матем. и матем. физ. — 2017. — Т. 57, № 10. — С. 1734–1747.
- Numerical simulation of convective motion in an anisotropic porous medium and cosymmetry conservation // Computational Mathematics and Mathematical Physics. — 2017. — V. 57, no. 10. — P. 1706–1719. — DOI: 10.1134/S0965542517100025. — MathSciNet: MR3719680. — ads: 2017CMMPh..57.1706A. , .
, . - Современные математические модели конвекции. — М: Физматлит, 2008.
- Modern Mathematical Models of Convection. — Moscow: Fizmatlit, 2008. — in Russian. — MathSciNet: MR2961939. , , , .
, , , . - Влияние напpавленной мигpации на фоpмиpование пpоcтpанcтвенныx популяционныx cтpуктуp // Биофизика. — 2015. — Т. 60, № 4. — С. 758–768.
- The Effect of Directed Migration on the Formation of Spatial Population Structures // Biophysics. — 2015. — V. 60, no. 4. — P. 622–631. — DOI: 10.1134/S0006350915040077. , .
, . - Неравновесная термодинамика. — М: Мир, 1964.
- Nonequilibrium thermodynamics. — Moscow: Mir, 1964. — in Russian. — MathSciNet: MR0813899. , .
, . - Конвективная устойчивость несжимаемой жидкости. — М: Наука, 1972.
- Convective stability of an incompressible fluid. — Moscow: Nauka, 1972. — in Russian. , .
, . - Конвективные движения в пористой среде вблизи порога неустойчивости равновесия // Докл. АНСССР. — 1978. — Т. 238, № 3. — С. 549–551.
- Convective motions in a porous medium near the instability threshold of equilibrium // Dokl. AN SSSR. — 1978. — V. 238, no. 3. — P. 549–551. — in Russian. — Math-Net: Mi eng/dan41489. , , .
, , . - Экспериментальное исследование конвективных структур в насыщенной жидкостью пористой среде вблизи порога неустойчивости механического равновесия // Гидродинамика. — 1999. — № 12. — С. 104–120.
- Experimental study of convective structures in a liquid-saturated porous medium near the threshold of instability of mechanical equilibrium // Hydrodynamics. — 1999. — no. 12. — P. 104–120. — in Russian. , .
, . - Анализ семейств вторичных стационарных режимов в задаче плоской фильтрационной конвекции в прямоугольном контейнере // Изв. РАН, МЖГ. — 1999. — № 5. — С. 53–62.
- Analysis of the families of secondary stationary regimes in the problem of plane filtration convection in a rectangular container // Fluid Dynamics. — 1999. — V. 34, no. 5. — P. 342. — MathSciNet: MR1742173. .
. - О динамике косимметричных систем хищников и жертв // Компьютерные исследования и моделирование. — 2017. — Т. 9, № 5. — С. 799–813. — DOI: 10.20537/2076-7633-2017-9-5-799-813
- Regarding the dynamics of cosymmetric predator – prey systems // Computer research and modeling. — 2017. — V. 9, no. 5. — P. 799–813. — DOI: 10.20537/2076-7633-2017-9-5-799-813. , .
, . - Численное исследование плоской задачи конвекции многокомпонентной жидкости в пористой среде // Изв. РАН. МЖГ. — 2004. — № 3. — С. 123–134.
- Numerical investigation of the plane problem of convection of a multicomponent fluid in a porous edium // Fluid Dynamics. — 2004. — V. 39, no. 3. — P. 464–473. — DOI: 10.1023/B:FLUI.0000038565.09347.ac. — MathSciNet: MR2121399. — ads: 2004FlDy...39..464K. , .
, . - О конвективных движениях в пористой среде, подогреваемой снизу // ПМТФ. — 1975. — № 2. — С. 131–137.
- Convective motions in a porous medium heated from below // J. Appl. Mech. Techn. Phys. — 1975. — V. 16. — P. 257–261. — DOI: 10.1007/BF00858924. — ads: 1975JAMTP..16..257L. .
. - Динамика многофазных сред. — М: Наука, 1987.
- Dynamics of multiphase media. — Moscow: Nauka, 1987. — in Russian. .
. - Косимметрия, вырождение решений операторных уравнений, возникновение фильтрационной конвекции // Мат. заметки. — 1991. — Т. 49, № 5. — С. 142–148.
- Cosymmetry, degeneration of solutions of operator equations, and onset of a filtration convection // Mathematical Notes of the Academy of Sciences of the USSR. — 1991. — V. 49, no. 5. — P. 540–545. — DOI: 10.1007/BF01142654. — MathSciNet: MR1137184. .
. - Co-symmetry breakdown in problems of thermal convection in porous medium // Physica D: Nonlinear Phenomena. — 1995. — V. 82, no. 4. — P. 398–417. — DOI: 10.1016/0167-2789(95)00045-6. — MathSciNet: MR1327218. — ads: 1995PhyD...82..398B. , , .
- Finite-difference approximation and cosymmetry conservation in filtration convection problem // Physics Letters A. — 1999. — V. 262. — P. 321–329. — DOI: 10.1016/S0375-9601(99)00599-X. — MathSciNet: MR1731370. — ads: 1999PhLA..262..321K. , .
- Soret-driven convection and separation of binary mixtures in a horizontal porous cavity submitted to cross heat fluxes // International Journal of Thermal Sciences. — 2016. — V. 104. — P. 29–38. — DOI: 10.1016/j.ijthermalsci.2015.12.013. — ads: 2016IJASS..17...29Y. , , , .
- Two-dimensional thermal convection in porous enclosure subjected to the horizontal seepage and gravity modulation // Physics of Fluids. — 2013. — V. 25, no. 8. — P. 084105. — DOI: 10.1063/1.4817375. — ads: 2013PhFl...25h4105M. , , .
- Convection in Porous Media. — New York: Springer, 2013. — 4th edn. — MathSciNet: MR1656781. , .
- The onset of double-diffusive convection in a nanofluid layer // Int. J. Heat and Fluid Flow. — 2011. — V. 32. — P. 771–776. — DOI: 10.1016/j.ijheatfluidflow.2011.03.010. — MathSciNet: MR2604204. , .
- Bistability and hysteresis induced by form drag in nonlinear subcritical and supercritical double-diffusive Lapwood convection in shallow porous enclosures // J. Fluid Mech. — 2017. — V. 812. — P. 463–500. — DOI: 10.1017/jfm.2016.787. — MathSciNet: MR3593487. — ads: 2017JFM...812..463R. , , .
- Effects of anisotropy on convection in horizontal and inclined porous layers / Emerging Technologies and Techniques in Porous Media. — 2004. — P. 285–306. — MathSciNet: MR2084670. .
- Onset of сonvection in an anisotropic porous layer with vertical principal axes // Transp Porous Med. — 2015. — no. 108. — P. 581–593. — DOI: 10.1007/s11242-015-0489-6. — MathSciNet: MR3351141. , .
- The onset of double-diffusive convection in a nanofluid saturated porous layer: Cross-diffusion effects // Eur. J. Mechanics, B/Fluids. — 2017. — no. 65. — P. 70–87. — DOI: 10.1016/j.euromechflu.2017.01.017. — MathSciNet: MR3680498. — ads: 2017EJMF...65...70U. , , , .
- Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it // Chaos. — 1995. — V. 5, no. 2. — P. 402–411. .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science