Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source

 pdf (669K)  / Annotation

List of references:

  1. М. С. Астанина, М. А. Шеремет. Моделирование термогравитационной конвекции с переменной вязкостью в замкнутой полости с локальным источником энергии // Вестник Пермского университета. Сер. Физика. — 2015. — № 3(31). — С. 52–59.
    • M. S. Astanina, M. A. Sheremet. Simulation of thermogravitational convection with variable viscosity in a closed cavity with a local energy source // Vestnik Permskogo universiteta. Ser. Fizika. — 2015. — no. 3(31). — P. 52–59. — in Russian. — MathSciNet: MR3380244.
  2. Н. В. Демьянович, В. И. Максимов, Т. А. Нагорнова. Математическое моделирование смешанной конвекции жидкости в водоеме с локальным стоком тепла при различных условиях теплообмена на свободной поверхности // Фундаментальные исследования. — 2014. — № 12-9. — С. 1883–1888.
    • N. V. Demyanovich, V. I. Maksimov, T. A. Nagornova. Mathematical modeling of mixed convection of a fluid in a reservoir with a local heat sink under different conditions of heat transfer on a free surface // Fundamentalnye issledovaniya. — 2014. — no. 12-9. — P. 1883–1888. — in Russian.
  3. В. Б. Байбурин, И. А. Ермолаев, А. С. Шаповалов. Моделирование смешанных конвективных течений в каналах систем охлаждения методом конечных элементов // Вестник Саратовского государственного технического университета. Сер. Физика, радиотехника и электроника. — 2013. — Т. 1, № 2 (70). — С. 49–53.
    • V. B. Bajburin, I. A. Ermolaev, A. S. Shapovalov. Simulation of mixed convection flows in the cooling system channels by a finite elements method // Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fizika, radiotechnika i elektronica. — 2013. — V. 1, no. 2 (70). — P. 49–53. — in Russian.
  4. В. Б. Байбурин, И. А. Ермолаев, А. С. Шаповалов. Моделирование смешанной термогравитационной конвекции в области с нерегулярной геометрией и неоднородными условиями на границах // Вестник Саратовского государственного технического университета. Сер. Физика, радиотехника и электроника. — 2011. — Т. 1, № 4 (59). — С. 88–93.
    • V. B. Bajburin, I. A. Ermolaev, A. S. Shapovalov. Modeling of mixed thermogravitational convection in the area with the irregularly geometry and non-uniform boundaries conditions // Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Fizika, radiotechnika i elektronica. — 2011. — V. 1, no. 4 (59). — P. 88–93. — in Russian.
  5. В. И. Жук. Анализ численных решений системы уравнений для свободной и вынужденной конвекции в ограниченном объеме // Вестник Приазовского государственного технического университета: сборник научных трудов. — Мариуполь: ПГТУ, 2003. — № 13. — С. 395–398.
    • V. I. Zhuk. Analysis of numerical solutions of the system of equations for free and forced convection in a limited volume // Vestnik Priazovskogo gosudarstvennogo tekhnicheskogo universiteta: sbornik nauchnykh trudov. — Mariypol: PGTU, 2003. — no. 13. — P. 395–398. — in Russian.
  6. В. М. Пасконов, В. И. Полежаев, Л. А. Чудов. Численное моделирование процессов тепло- и массообмена. — М: Наука, 1984.
    • V. M. Paskonov, V. I. Polezhaev, L. A. Chudov. Numerical simulation of heat and mass transfer processes. — Moscow: Nauka, 1984. — in Russian.
  7. A. Abdoli, S. R. Reddy, G. S. Dulikravich, S. M. J. Zeidi. Effect of cooling fluids on high frequency electric and magnetic fields in microelectronic systems with integrated TSVs // Microelectronics Journal. — 2017. — V. 64. — P. 19–28. — DOI: 10.1016/j.mejo.2017.03.015.
  8. M. S. Astanina, M. A. Sheremet, J. C. Umavathi. Unsteady natural convection with temperaturedependent viscosity in a square cavity filled with a porous medium // Transport in Porous Media. — 2015. — V. 110, no. 1. — P. 113–126. — DOI: 10.1007/s11242-015-0558-x. — MathSciNet: MR3397111.
  9. R. Best, W. Rivera. A review of thermal cooling systems // Applied Thermal Engineering. — 2015. — V. 75. — P. 1162–1175. — DOI: 10.1016/j.applthermaleng.2014.08.018.
  10. N. S. Bondareva, M. A. Sheremet. Conjugate heat transfer in the PCM-based heat storage system with finned copper profile: Application in electronics cooling // International Journal of Heat and Mass Transfer. — 2018. — V. 124. — P. 1275–1284. — DOI: 10.1016/j.ijheatmasstransfer.2018.04.040.
  11. Y. A. Cengel, A. J. Ghajar. Heat and Mass Transfer: Fundamentals and Applications. — NY: McGraw-Hill Education, 2015.
  12. P. A. De Oliveira, Jr. J. R. Barbosa. Novel two-phase jet impingement heat sink for active cooling of electronic devices // Applied Thermal Engineering. — 2017. — V. 112. — P. 952–964. — DOI: 10.1016/j.applthermaleng.2016.10.133.
  13. J. M. Hyun, S. Y. Kim, H. J. Sung. Forced convection from an isolated heat source in a channel with porous medium // International Journal of Heat and Fluid Flow. — 1995. — V. 416. — P. 527–535.
  14. F. Kojok, F. Fardoun, R. Younes, R. Outbib. Hybrid cooling systems: A review and an optimized selection scheme // Renewable and Sustainable Energy Reviews. — 2016. — V. 65. — P. 57–80. — DOI: 10.1016/j.rser.2016.06.092.
  15. K. Kunes. Dimensionless Physical Quantities in Science and Engineering. — London: Elsevier, 2012.
  16. S. Kuriyama, T. Takeda, S. Funatani. Study on heat transfer characteristics of the one side-heated vertical channel with inserted porous materials applied as a vessel cooling system // Nuclear Engineering and Technology. — 2015. — V. 47. — P. 534–545. — DOI: 10.1016/j.net.2015.06.002.
  17. I. V. Miroshnichenko, M. A. Sheremet. Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: A review // Renewable and Sustainable Energy Reviews. — 2018. — V. 82. — P. 40–59. — DOI: 10.1016/j.rser.2017.09.005.
  18. H. F. Oztop, P. Estelle, W. M. Yan, K. Al-Salem, J. Orfi, O. Mahian. A brief review of natural convection in enclosures under localized heating with and without nanofluids // International Communications in Heat and Mass Transfer. — 2015. — V. 60. — P. 37–44. — DOI: 10.1016/j.icheatmasstransfer.2014.11.001.
  19. B. Sarper, M. Saglam, O. Aydin. Experimental and numerical investigation of natural convection in a discretely heated vertical channel: Effect of the blockage ratio of the heat sources // International Journal of Heat and Mass Transfer. — 2018. — V. 126. — P. 894–910. — DOI: 10.1016/j.ijheatmasstransfer.2018.05.089.
  20. O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. — London: Elsevier, 2013. — MathSciNet: MR3292660.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"