Solving of the Exner equation for morphologically complex bed

 pdf (308K)  / Annotation

List of references:

  1. Ю. А. Быстров, С. А. Исаев, Н. А. Кудрявцев, А. И. Леонтьев. Численное моделирование вихревой интенсификации теплообмена в пакетах труб. — М: Судостроение, 2005. — 389 с.
    • Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, A. I. Leont‘yev. Numerical simulation of vortex intensification of heat transfer in stacks of pipes. — Moscow: Sudostroenie, 2005. — 389 p. — in Russian. — MathSciNet: MR2165923.
  2. Р. Курант, К. Фридрихс, Г. Леви. О разностных уравнениях математической физики // Усп. матем. наук. — 1941. — № 8. — С. 125–160.
    • R. Curant, K. Friedrichs, G. Lewy. On difference equations of mathematical physics // Uspehi matematicheskikh nauk. — 1941. — no. 8. — P. 125–160. — in Russian.
  3. Г. И. Марчук, В. И. Агошков. Введение в проекционно-сеточные методы. — М: Наука. Главная редакция физико-математической литературы, 1981. — 416 с.
    • G. I. Marchuk, V. I. Agoshkov. Introduction to projection-grid methods. — Moscow: Nauka. Glavnaia redaktciya fiziko-matematicheskoy literatury, 1981. — 416 p. — in Russian. — MathSciNet: MR0666396.
  4. С. Патанкар. Численные методы решения задач теплообмена и динамики жидкости. — М: Энергоатомиздат, 1984. — 152 с.
    • S. Patankar. Numerical heat transfer and fluid flow. — USA: CRC Press, 1980. — 214 p.
  5. П. Г. Петров. Движение сыпучей среды в придонном слое жидкости // ПМТФ. — 1991. — Т. 32, № 5. — С. 72–75.
  6. И. Б. Петров, А. И. Лобанов. Лекции по вычислительной математике: учебное пособие. — М: Интернет-университет информационных технологий; БИНОМ. Лаборатория знаний, 2006. — 523 с.
    • I. B. Petrov, A. I. Lobanov. Lectures on Computational Mathematics: A Tutorial. — Moscow: Internet-universitet informatcionnykh tekhnologiy; BINOM. Laboratoriya znaniy, 2006. — 523 p. — in Russian.
  7. А. Г. Петров, И. И. Потапов. Перенос наносов под действием нормальных и касательных придонных напряжений с учетом уклона дна // ПМТФ. — 2014. — № 5. — С. 100–105.
    • A. G. Petrov, I. I. Potapov. Sediment Transport under Normal and Tangential Bottom Stresses with the Bottom Slope Taken into Account // J. Appl. Mech. Tech. Phys. — 2014. — V. 55, no. 5. — P. 812–817. — DOI: 10.1134/S0021894414050101. — ads: 2014JAMTP..55..812P.
  8. А. А. Самарский. Введение в численные методы. — М: Наука, 1987. — 269 с.
    • A. A. Samarskiy. Introduction to numerical methods. — Moscow: Nauka, 1987. — 269 p. — in Russian. — MathSciNet: MR0907470.
  9. А. А. Сорокин, С. В. Макогонов, С. П. Королев. Информационная инфраструктура для коллективной работы ученых Дальнего Востока России // Научно-техническая информация. Сер. 1: Организация и методика информационной работы. — 2017. — № 12. — С. 14–16.
    • A. A. Sorokin, S. I. Makogonov, S. P. Korolev. The Information Infrastructure for Collective Scientific Work in the Far East of Russia // Scientific and Technical Information Processing. — 2017. — V. 44, no. 4. — P. 302–304. — DOI: 10.3103/S0147688217040153.
  10. R. A. Bagnold. Motion of waves in shallow water, interaction between waves and sand bottoms // Philosophical Transactions of the Royal Society of London. — 1946. — V. A187. — P. 1–15.
  11. Y.-Ch. Chinag, S.-Sh. Hsiao. Coastal Morphological Modeling / Sediment Transport in Aquatic Environments. — 2011. — P. 203–230. — A. J. Manning (ed.). — http://www.intechopen.com/books/sediment-transport-in-aquatic-environments/coastal-morphological-modeling. — request data: 04.09.2018.
  12. S. E. Coleman, V. I. Nikora. Initiation and growth of fluvial dunes / Proceedings of Marine and River Dune Dynamics III. — UK: University of Leeds, 2008. — P. 43–49. — D. Parsons, T. Garlan, J. Best (eds.).
  13. F. M. Exner. Uber die Wechselwirkung zwischen Wasser und Geschiebe in Flussen Sitzungsber // Akad. Wiss. Wien, Math. Naturwiss. Kl. Abt. 2A. — 1925. — V. 134. — P. 165–180.
  14. F. M. Exner. Uber Flussmaander Wogenwolken und Liklonen, die durch Retebungswalz enentstehen // Akad. Wiss. Wien, Math. Naturwiss. Kl. Abt. — 1928. — V. B137, no. 11-a.
  15. A. B. Fortunato, A. Oliveira. Improving the Stability of a Morphodynamic Modeling System // J. Coast. Res. — 2007. — no. 50. — P. 486–490.
  16. N. G. Jacobsen, J. Fredsoe. A full hydrodynamic modelling of 2d breaker Bar development / The Proceedings of the Coastal Sediments. — 2011. — P. 846–858. — DOI: 10.1142/9789814355537_0064 .
  17. J. H. Jensen, E. O. Madsen, J. Fredsoe. Oblique flow over dredged channels. II: Sediment transport and morphology // J. Hydraul. Eng. — 1999. — V. 125, no. 11. — P. 1190–1198. — DOI: 10.1061/(ASCE)0733-9429(1999)125:11(1190).
  18. H. K. Johnson, J. A. Zyserman. Controlling spatial oscillations in bed level update schemes // Coast. Eng. J. — 2002. — V. 46. — P. 109–126. — DOI: 10.1016/S0378-3839(02)00054-6.
  19. T. Kawamura, H. Takami, K. Kuwahara. Computation of high Reynolds number flow around a circular cylinder with surface roughness // Fluid Dyn. Res. — 1986. — V. 1, no. 2. — P. 145–162. — DOI: 10.1016/0169-5983(86)90014-6. — ads: 1986FlDyR...1..145K.
  20. J. F. Kennedy. The mechanics of dunes and antidunes in erodible-bed channels // J. Fluid Mech. — 1963. — V. 16. — P. 521–544. — DOI: 10.1017/S0022112063000975. — ads: 1963JFM....16..521K.
  21. P. Lax, B. Wendroff. Systems of conservation laws // Commun. Pure Appl. Math. — 1960. — V. 13, no. 2. — P. 217–237. — DOI: 10.1002/cpa.3160130205. — MathSciNet: MR0120774.
  22. G. A. Leftheriotis, A. A. Dimas. Coupled simulation of flow, sediment transport and morphology evolution over ripples based on the immersed boundary method / E-proceedings of the 36th IAHR World Congress. — The Hague, the Netherlands. — 13 p. — 28 June – 3 July 2015.
  23. B. P. Leonard. A stable and accurate convective modelling procedure based on quadratic interpolation // Comput. Methods Appl. Mech. Eng. — 1979. — V. 19. — P. 59–98. — DOI: 10.1016/0045-7825(79)90034-3. — ads: 1979CMAME..19...59L.
  24. G. Li, V. Caleffi, J. M. Gao. High-order well-balanced central WENO scheme for pre-balanced shallow water equations // Comput. Fluids. — 2014. — V. 99. — P. 182–189. — DOI: 10.1016/j.compfluid.2014.04.022. — MathSciNet: MR3212753.
  25. W. Long, J. T. Kirby, Zh. Shao. A numerical scheme for morphological bed level calculations // Coast. Eng. J. — 2008. — V. 55. — P. 167–180. — DOI: 10.1016/j.coastaleng.2007.09.009.
  26. R. W. MacCormack. The effect of viscosity in hypervelocity impact cratering // AIAA. — 1969. — P. 69–354.
  27. C. T. Newton. An experimental investigation of bed degradation in an open channel // Trans. Boston Soc. Civ. Engrs. — 1951. — P. 28–60. — MathSciNet: MR2692288.
  28. S. L. Niemann, J. Fredsoe, N. G. Jacobsen. Sand dunes in steady flow at low Froude numbers: Dune height evolution and flow resistance // J. Hydraul. Eng. — 2011. — V. 137, no. 1. — P. 5–14. — DOI: 10.1061/(ASCE)HY.1943-7900.0000255.
  29. K. J. Richards, P. A. Taylor. A numerical model of flow over sand waves in water of finite depth // Geophys. J. Int. — 1981. — V. 65. — P. 103–128. — DOI: 10.1111/j.1365-246X.1981.tb02703.x. — ads: 1981GeoJI..65..103R.
  30. L. N. Sanne. Modelling of sand dunes in steady and tidal flow. — Denmark:: Technical University of Copenhagen, 2003. — 185 p. — Ph.D. Thesis.
  31. C. W. Shu, S. Osher. Efficient implementation of essentially nonoscillatory shock-capturing schemes // J. Comput. Phys. — 1988. — V. 77. — P. 439–471. — DOI: 10.1016/0021-9991(88)90177-5. — MathSciNet: MR0954915. — ads: 1988JCoPh..77..439S.
  32. J. G. Venditti, M. A. Church, S. J. Bennett. Bed form initiation from a flat sand bed // J. Geophys. Res.: Earth Surface. — 2005. — V. 110. — F01009. — DOI: 10.1029/2004JF000149. — http://onlinelibrary.wiley.com/doi/10.1029/2004JF000149/pdf. — request data: 03.09.2018.
  33. R. Warming, R. M. Beam. Upwind second-order difference schemes and applications in unsteady aerodynamic flows / AIAA Computational Fluid Dynamics Conference Proceedings. — Hartford, Conn, 1975. — P. 17–28.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"