Investigation the material properties of a plate by laser ultrasound using the analysis of multiple waves

 pdf (659K)  / Annotation

List of references:

  1. П. А. Болотских, Г. А. Травин. Лазерное возбуждение ультразвуковых колебаний // Научные ведомости БГУ. — 1997. — № 2. — С. 52–53.
    • P. A. Bolotskih, G. A. Travin. Laser excitation of ultrasonic vibrations // Nauchnye vedomosti BGU. — 1997. — no. 2. — P. 52–53. — in Russian.
  2. И. Н. Ермолов, А. Х. Вопилкин, В. Г. Бадалян. Расчеты в ультразвуковой дефектоскопии: краткий справочник. — М: Эхо, 2000.
    • I. N. Ermolov, A. H. Vopilkin, V. G. Badalyan. Computations in nondestructive testing: reference book. — Moscow: Ehkho, 2000. — in Russian.
  3. С. М. Жаркий, А. А. Карабутов, И. М. Пеливанов, Н. Б. Подымова, В. Ю. Тимошенко. Исследование слоев пористого кремния лазерным ультразвуковым методом // Физика и техника полупроводников. — 2003. — Т. 37, № 4. — С. 485–489.
    • S. M. Zharkij, A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, V. Yu. Timoshenko. Investigation of porous silicon layers by laser ultrasonic method // Physics and technology of semiconductors. — 2003. — V. 37, no. 4. — P. 485–489. — in Russian.
  4. А. Ф. Зацепин. Акустический контроль. — Екатеринбург: УГТУ, 2005.
    • A. F. Zacepin. Acoustic control. — Ekaterinburg: USTU, 2005. — in Russian.
  5. А. А. Коваленко, А. С. Грязнов. К методике измерения продольной и поперечной скоростей ультразвука в листовых материалах // Вестник Бурятского государственного университета. — 2012. — № 3.
    • A. A. Kovalenko, A. S. Gryaznov. To the method of measuring the longitudinal and transverse ultrasound speeds in sheet materials // Vestnik Buryatskogo gosudarstvennogo universiteta. — 2012. — no. 3. — in Russian.
  6. Л. М. Лямшев. Лазерное термооптическое возбуждение звука. — М: Наука, 1989.
    • L. M. Lyamshev. Laser thermooptical excitation of sound. — Moscow: Nauka, 1989. — in Russian.
  7. В. Новацкий. Теория упругости. — М: Мир, 1975.
    • V. Novackij. Theory of elasticity. — Moscow: Mir, 1975. — in Russian. — MathSciNet: MR0436704.
  8. А. Танарро. Лазерный ультразвук. — http://www.locus.spb.ru/files/UZK/podrobnee_laser_ultrasonics.pdf. — дата обращения: 02.02.2018.
  9. В. Н. Тищенко, А. Г. Пономаренко, В. Г. Посух, А. А. Павлов, В. И. Запрягаев, А. И. Гулидов, Э. Л. Бояринцев, И. Н. Кавун, А. В. Мелехов, М. П. Голубев, А. А. Павлов, Л. С. Голобокова, И. Б. Мирошниченко, А. С. Шмаков. Лазерный источник звука, создаваемый при облучении мишени широкоапертурным излучением / XXIV сессия Российского акустического общества, cессия Научного совета по акустике РАН. Ультразвук и ультразвуковые технологии. — 2011.
    • V. N. Tishhenko, A. G. Ponomarenko, V. G. Posux, A. A. Pavlov, V. I. Zapryagaev, A. I. Gulidov, E. L. Boyarincev, I. N. Kavun, A. V. Melexov, M. P. Golubev, A. A. Pavlov, L. S. Golobokova, I. B. Miroshnichenko, A. S. Shmakov. A laser source of sound created by irradiating a target with wide-aperture radiation / XXIV session of the Russian Acoustical Society, session of the Scientific Council on Acoustics of the Russian Academy of Sciences. Ultrasound and ultrasound technology. — 2011. — in Russian.
  10. P. Bate, P. Lundin, E. Lindh-Ulmgren, B. Hutchinson. Application of laser-ultrasonics to texture measurements in metal processing // Acta Materialia. — 2017. — V. 123. — P. 329–336. — DOI: 10.1016/j.actamat.2016.10.043.
  11. K. Beklemysheva, A. Vasyukov, A. Ermakov, A. Favorskaya. Numerical modeling of ultrasound beam forming in elastic medium // Procedia Computer Science. — 2017. — V. 112. — P. 1488–1496. — DOI: 10.1016/j.procs.2017.08.034. — MathSciNet: MR3725745.
  12. E. Faccioli, F. Maggio, R. Paolucci, A. Quarteroni. 2D and 3D elastic wave propagation by a pseudospectral domain decomposition method // Journal of seismology. — 1997. — V. 1, no. 3. — P. 237–251. — DOI: 10.1023/A:1009758820546. — ads: 1997JSeis...1..237F.
  13. A. V. Favorskaya. The use of multiple waves to obtain information on an underlying geological structure // Procedia Computer Science. — 2018. — V. 126. — P. 1110–1119. — DOI: 10.1016/j.procs.2018.08.048.
  14. A. V. Favorskaya, A. V. Breus, B. V. Galitskii. Application of the grid-characteristic method to the seismic isolation model / Proceedings of the 50 Years of Development of the Grid-Characteristic Method, Smart Innovation, Systems and Technologies. — 2019. — V. 133. — P. 167–181.
  15. A. Favorskaya, V. Golubev, D. Grigorievyh. Explanation the difference in destructed areas simulated using various failure criteria by the wave dynamics analysis // Procedia Computer Science. — 2018. — V. 126. — P. 1091–1099. — DOI: 10.1016/j.procs.2018.08.046.
  16. A. V. Favorskaya, I. B. Petrov. A study of high-order grid-characteristic methods on unstructured grids // Numerical Analysis and Applications. — 2016. — V. 9, no. 2. — P. 171–178. — DOI: 10.1134/S1995423916020087. — MathSciNet: MR3509204.
  17. A. V. Favorskaya, M. S. Zhdanov, N. I. Khokhlov, I. B. Petrov. Modeling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method // Geophysical Prospecting. — 2018. — V. 66, no. 8. — P. 1485–1502. — DOI: 10.1111/1365-2478.12639. — MathSciNet: MR3586146. — ads: 2018GeopP..66.1485F.
  18. C. M. Grunsteidl, I. A. Veres, T. W. Murray. Experimental and numerical study of the excitability of zero group velocity Lamb waves by laser-ultrasound // The Journal of the Acoustical Society of America. — 2015. — V. 138, no. 1. — P. 242–250. — DOI: 10.1121/1.4922701. — ads: 2015ASAJ..138..242G.
  19. R. W. Graves. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences // Bulletin of the Seismological Society of America. — 1996. — V. 86, no. 4. — P. 1091–1106. — MathSciNet: MR1402321.
  20. A. Hanyga, H. B. Helle. Synthetic seismograms from generalized ray tracing // Geophysical Prospecting. — 1995. — V. 43, no. 1. — P. 51–75. — DOI: 10.1111/j.1365-2478.1995.tb00124.x. — ads: 1995GeopP..43...51H.
  21. H. Ji, J. Luo, J. Qiu, L. Cheng. Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique // Mechanical Systems and Signal Processing. — 2018. — V. 104. — P. 19–35. — DOI: 10.1016/j.ymssp.2017.10.036. — ads: 2018MSSP..104...19J.
  22. D. Komatitsch, J. P. Vilotte, R. Vai, J. M. Castillo-Covarrubias, F. J. Sanchez-Sesma. The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems // International Journal for numerical methods in engineering. — 1999. — V. 45, no. 9. — P. 1139–1164. — DOI: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T. — ads: 1999IJNME..45.1139K.
  23. G. A. McMechan, W. D. Mooney. Asymptotic ray theory and synthetic seismograms for laterally varying structures: theory and application to the Imperial Valley, California // Bulletin of the Seismological Society of America. — 1980. — V. 70, no. 6. — P. 2021–2035.
  24. P. Moczo, J. O. Robertsson, L. Eisner. The finite-difference time-domain method for modeling of seismic wave propagation // Advances in geophysics. — 2007. — V. 48. — P. 421–516. — DOI: 10.1016/S0065-2687(06)48008-0. — ads: 2007AdGeo..48..421M.
  25. M. V. Muratov, I. B. Petrov. Application of fractures mathematical models in exploration seismology problems modeling / Proceedings of the 50 Years of Development of the Grid-Characteristic Method, Smart Innovation, Systems and Technologies. — 2019. — V. 133. — P. 120–131.
  26. I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, V. A. Miryakha, A. V. Sannikov, V. I. Golubev. Monitoring the state of the moving train by use of high performance systems and modern computation methods // Mathematical Models and Computer Simulations. — 2015. — V. 7, no. 1. — P. 51–61. — DOI: 10.1134/S2070048215010081. — MathSciNet: MR3403802.
  27. C. B. Scruby, L. E. Drain. Laser ultrasonics techniques and applications. — CRC Press, 1990.
  28. J. Shragge, T. E. Blum, K. Van Wijk, L. Adam. Full-wavefield modeling and reverse time migration of laser ultrasound data: A feasibility study // Modeling and RTM of LU data. Geophysics. — 2015. — V. 80, no. 6. — P. D553–D563.
  29. G. D. Spence, K. P. Whittall, R. M. Clowes. Practical synthetic seismograms for laterally varying media calculated by asymptotic ray theory // Bulletin of the Seismological Society of America. — 1984. — V. 74, no. 4. — P. 1209–1223.
  30. P. V. Stognii, N. I. Khokhlov. 2D seismic prospecting of gas pockets / Proceedings of the 50 Years of Development of the Grid-Characteristic Method, Smart Innovation, Systems and Technologies. — 2019. — V. 133. — P. 156–166.
  31. H. Taheri, L. W. Koester, T. A. Bigelow, L. J. Bond. Thermoelastic finite element modeling of laser generated ultrasound in additive manufacturing materials / ASNT Annual Conference 2017. — 2017. — P. 188–198.
  32. T. Wang, X. Tang. Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach // Geophysics. — 2003. — V. 68, no. 5. — P. 1749–1755.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"