Результаты поиска по '«cascade of cascades»':
Найдено статей: 14
  1. Yevin I.A.
    Introduction to the theory of complex networks
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 121-141

    There was a new direction of studying of the complex systems last years, considering them as networks. Nodes in such networks represent elements of these complex systems, and links between nodes – interactions between elements. These researches deal with real systems, such as biological (metabolic networks of cells, functional networks of a brain, ecological systems), technical (the Internet, WWW, networks of the companies of cellular communication, power grids), social (networks of scientific cooperation, a network of movie actors, a network of acquaintances). It has appeared that these networks have more complex architecture, than classical random networks. In the offered review the basic concepts theory of complex networks are given, and the basic directions of studying of real networks structures are also briefly described.

    Views (last year): 53. Citations: 107 (RSCI).
  2. Malinetsky G.G., Faller D.S.
    Transition to chaos in the «reaction–diffusion» systems. The simplest models
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 3-12

    The article discusses the emergence of chaotic attractors in the system of three ordinary differential equations arising in the theory of «reaction-diffusion» systems. The dynamics of the corresponding one- and two-dimensional maps and Lyapunov exponents of such attractors are studied. It is shown that the transition to chaos is in accordance with a non-traditional scenario of repeated birth and disappearance of chaotic regimes, which had been previously studied for one-dimensional maps with a sharp apex and a quadratic minimum. Some characteristic features of the system — zones of bistability and hyperbolicity, the crisis of chaotic attractors — are studied by means of numerical analysis.

    Views (last year): 6. Citations: 1 (RSCI).
  3. In the last decades, universal scenarios of the transition to chaos in dynamic systems have been well studied. The scenario of the transition to chaos is defined as a sequence of bifurcations that occur in the system under the variation one of the governing parameters and lead to a qualitative change in dynamics, starting from the regular mode and ending with chaotic behavior. Typical scenarios include a cascade of period doubling bifurcations (Feigenbaum scenario), the breakup of a low-dimensional torus (Ruelle–Takens scenario), and the transition to chaos through the intermittency (Pomeau–Manneville scenario). In more complicated spatially distributed dynamic systems, the complexity of dynamic behavior growing with a parameter change is closely intertwined with the formation of spatial structures. However, the question of whether the spatial and temporal axes could completely exchange roles in some scenario still remains open. In this paper, for the first time, we propose a mathematical model of convection–diffusion–reaction, in which a spatial transition to chaos through the breakup of the quasi–periodic regime is realized in the framework of the Ruelle–Takens scenario. The physical system under consideration consists of two aqueous solutions of acid (A) and base (B), initially separated in space and placed in a vertically oriented Hele–Shaw cell subject to the gravity field. When the solutions are brought into contact, the frontal neutralization reaction of the second order A + B $\to$ C begins, which is accompanied by the production of salt (C). The process is characterized by a strong dependence of the diffusion coefficients of the reagents on their concentration, which leads to the appearance of two local zones of reduced density, in which chemoconvective fluid motions develop independently. Although the layers, in which convection develops, all the time remain separated by the interlayer of motionless fluid, they can influence each other via a diffusion of reagents through this interlayer. The emerging chemoconvective structure is the modulated standing wave that gradually breaks down over time, repeating the sequence of the bifurcation chain of the Ruelle–Takens scenario. We show that during the evolution of the system one of the spatial axes, directed along the reaction front, plays the role of time, and time itself starts to play the role of a control parameter.

  4. Kulikov Y.M., Son E.E.
    CABARET scheme implementation for free shear layer modeling
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903

    In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.

    The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods

    Views (last year): 17.
  5. Gubernov V.V., Kolobov A.V., Polezhaev A.A.
    Pulsating regimes of flames propagation in a model with chain-branching reaction
    Computer Research and Modeling, 2009, v. 1, no. 3, pp. 273-280

    In this paper we investigate propagation of planar combustion waves in an adiabatic model with two-step chain branching reaction mechanism. Pulsating instabilities are found to emerge for fuel Lewis number greater than one due to a Hopf bifurcation. The Hopf bifurcation is demonstrated to be of a supercritical nature and it gives rise to periodic pulsating combustion waves as the neutral stability boundary is crossed. Further in-crease of the bifurcation parameter initiates period doubling bifurcation cascade and leads to chaotic regime of combustion wave propagation. The chaotic wave extinguishes when the bifurcation parameter becomes sufficiently large.

    Citations: 1 (RSCI).
  6. Denisenko V.V., Fortova S.V., Lebedev V.V., Kolokolov I.V.
    Numerical simulation of the backward influence of a polymer additive on the Kolmogorov flow
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1093-1105

    A numerical method is proposed that approximates the equations of the dynamics of a weakly compressible viscous flow in the presence of a polymer component of the flow. The behavior of the flow under the influence of a static external periodic force in a periodic square cell is investigated. The methodology is based on a hybrid approach. The hydrodynamics of the flow is described by a system of Navier – Stokes equations and is numerically approximated by the linearized Godunov method. The polymer field is described by a system of equations for the vector of stretching of polymer molecules $\bf R$, which is numerically approximated by the Kurganov – Tedmor method. The choice of model relationships in the development of a numerical methodology and the selection of modeling parameters made it possible to qualitatively model and study the regime of elastic turbulence at low Reynolds $Re \sim 10^{-1}$. The polymer solution flow dynamics equations differ from the Newtonian fluid dynamics equations by the presence on the right side of the terms describing the forces acting on the polymer component part. The proportionality coefficient $A$ for these terms characterizes the backward influence degree of the polymers number on the flow. The article examines in detail how the flow and its characteristics change depending on the given coefficient. It is shown that with its growth, the flow becomes more chaotic. The flow energy spectra and the spectra of the polymers stretching field are constructed for different values of $A$. In the spectra, an inertial sub-range of the energy cascade is traced for the flow velocity with an indicator $k \sim −4$, for the cascade of polymer molecules stretches with an indicator $−1.6$.

  7. Denisenko V.V., Doludenko A.N., Fortova S.V., Kolokolov I.V., Lebedev V.V.
    Numerical modeling of the Kolmogorov flow in a viscous media, forced by the static force periodic in space
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 741-753

    The main feature of a two-dimensional turbulent flow, constantly excited by an external force, is the appearance of an inverse energy cascade. Due to nonlinear effects, the spatial scale of the vortices created by the external force increases until the growth is stopped by the size of the cell. In the latter case, energy is accumulated at these dimensions. Under certain conditions, accumulation leads to the appearance of a system of coherent vortices. The observed vortices are of the order of the box size and, on average, are isotropic. Numerical simulation is an effective way to study such the processes. Of particular interest is the problem of studying the viscous fluid turbulence in a square cell under excitation by short-wave and long-wave static external forces. Numerical modeling was carried out with a weakly compressible fluid in a two-dimensional square cell with zero boundary conditions. The work shows how the flow characteristics are influenced by the spatial frequency of the external force and the magnitude of the viscosity of the fluid itself. An increase in the spatial frequency of the external force leads to stabilization and laminarization of the flow. At the same time, with an increased spatial frequency of the external force, a decrease in viscosity leads to the resumption of the mechanism of energy transfer along the inverse cascade due to a shift in the energy dissipation region to a region of smaller scales compared to the pump scale.

  8. Maksimov F.A., Nigmatullin V.O.
    Hybrid grid method for external and internal gas dynamics
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 543-565

    Based on the modeling method using a mesh system, an algorithm is implemented for solving a unsteady problem with moving bodies The algorithm takes into account the movement and rotation of bodies according to a given law of motion. The algorithm is applied to analysis the flow around an infinite composed of cylinders with an elliptical cross-section, which either move across the flow or rotate with a change in the angle of attack. To simulate the flow of bodies with a sharp edge, characteristic of the profiles of gas turbine machines, an algorithm for constructing a mesh of type C with the inclusion of a certain area behind the profile is implemented. The program for modeling the flow near the profile is implemented within the framework of models of Euler equations, Navier – Stokes equations in the approximation of a thin layer with laminar viscosity and turbulent viscosity in the framework of an algebraic viscosity model. The program has also been adapted to solve the problems of internal gas dynamics of turbomachines. For this purpose, the method of setting the boundary conditions at the entrance and exit from the calculated area from the velocity to the pressure drop, as well as at the lateral boundaries from the free flow to the periodicity, was changed. This made it possible to simulate the flow of gas in the inter-blade channels of compressors and turbines of gas turbine engines. To refine the algorithm, a series of calculations of the aerodynamic parameters of several turbine cascades in various subsonic and supersonic modes and their comparison with the experiment were carried out. Calculations of turbine grating parameters were carried out within the framework of the inviscid and viscous gas model. The calculation and experiment were compared by the distribution of gas parameters near the profile, as well as by the energy losses of the flow in the cascade. Calculations have shown the applicability and correctness of the program to solve this class of problems. To test the program on the problems of external subsonic aerodynamics, calculations of the aerodynamic characteristics of an isolated airfoil in an undisturbed flow were performed. The results obtained allow us to assert the applicability of the hybrid grid method to various classes of problems of applied gas dynamics.

  9. Zhdanova O.L., Zhdanov V.S., Neverova G.P.
    Modeling the dynamics of plankton community considering phytoplankton toxicity
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1301-1323

    We propose a three-component discrete-time model of the phytoplankton-zooplankton community, in which toxic and non-toxic species of phytoplankton compete for resources. The use of the Holling functional response of type II allows us to describe an interaction between zooplankton and phytoplankton. With the Ricker competition model, we describe the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.). Many phytoplankton species, including diatom algae, are known not to release toxins if they are not damaged. Zooplankton pressure on phytoplankton decreases in the presence of toxic substances. For example, Copepods are selective in their food choices and avoid consuming toxin-producing phytoplankton. Therefore, in our model, zooplankton (predator) consumes only non-toxic phytoplankton species being prey, and toxic species phytoplankton only competes with non-toxic for resources.

    We study analytically and numerically the proposed model. Dynamic mode maps allow us to investigate stability domains of fixed points, bifurcations, and the evolution of the community. Stability loss of fixed points is shown to occur only through a cascade of period-doubling bifurcations. The Neimark – Sacker scenario leading to the appearance of quasiperiodic oscillations is found to realize as well. Changes in intrapopulation parameters of phytoplankton or zooplankton can lead to abrupt transitions from regular to quasi-periodic dynamics (according to the Neimark – Sacker scenario) and further to cycles with a short period or even stationary dynamics. In the multistability areas, an initial condition variation with the unchanged values of all model parameters can shift the current dynamic mode or/and community composition.

    The proposed discrete-time model of community is quite simple and reveals dynamics of interacting species that coincide with features of experimental dynamics. In particular, the system shows behavior like in prey-predator models without evolution: the predator fluctuations lag behind those of prey by about a quarter of the period. Considering the phytoplankton genetic heterogeneity, in the simplest case of two genetically different forms: toxic and non-toxic ones, allows the model to demonstrate both long-period antiphase oscillations of predator and prey and cryptic cycles. During the cryptic cycle, the prey density remains almost constant with fluctuating predators, which corresponds to the influence of rapid evolution masking the trophic interaction.

  10. Galochkina T.V., Volpert V.A.
    Mathematical modeling of thrombin propagation during blood coagulation
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 469-486

    In case of vessel wall damage or contact of blood plasma with a foreign surface, the chain of chemical reactions called coagulation cascade is launched that leading to the formation of a fibrin clot. A key enzyme of the coagulation cascade is thrombin, which catalyzes formation of fibrin from fibrinogen. The distribution of thrombin concentration in blood plasma determines spatio-temporal dynamics of clot formation. Contact pathway of blood coagulation triggers the production of thrombin in response to the contact with a negatively charged surface. If the concentration of thrombin generated at this stage is large enough, further production of thrombin takes place due to positive feedback loops of the coagulation cascade. As a result, thrombin propagates in plasma cleaving fibrinogen that results in the clot formation. The concentration profile and the speed of propagation of thrombin are constant and do not depend on the type of the initial activator.

    Such behavior of the coagulation system is well described by the traveling wave solutions in a system of “reaction – diffusion” equations on the concentration of blood factors involved in the coagulation cascade. In this study, we carried out detailed analysis of the mathematical model describing the main reaction of the intrinsic pathway of coagulation cascade.We formulate necessary and sufficient conditions of the existence of the traveling wave solutions. For the considered model the existence of such solutions is equivalent to the existence of the wave solutions in the simplified one-equation model describing the dynamics of thrombin concentration derived under the quasi-stationary approximation.

    Simplified model also allows us to obtain analytical estimate of the thrombin propagation rate in the considered model. The speed of the traveling wave for one equation is estimated using the narrow reaction zone method and piecewise linear approximation. The resulting formulas give a good approximation of the velocity of propagation of thrombin in the simplified, as well as in the original model.

    Views (last year): 10. Citations: 1 (RSCI).
Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"