All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Рассказывается об истории развития технологии CUDA, о принципиальных её ограничениях. Статья предназначена для читателей, не знакомых с особенностями программирования графических процессоров, но желающих оценитьв озможности их использования для решения прикладных задач.
Views (last year): 5. Citations: 4 (RSCI).The history of the development of CUDA technology and its fundamental limitations are discribed. The article is intended for those readers who are not familiar with graphics adapter programming features but want to evaluate the possibilities for GPU computing applications.
-
Эффективные генераторы псевдослучайных чисел при молекулярном моделировании на видеокартах
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 287-308Динамика Ланжевена, метод Монте-Карло и моделирование молекулярной динамики в неявном растворителе требуют больших массивов случайных чисел на каждом шаге расчета. Мы исследовали два подхода в реализации генераторов на графических процессорах. Первый реализует последовательный алгоритм генератора на каждом потоке в отдельности. Второй основан на возможности взаимодействия между потоками и реализует общий алгоритм на всех потоках в целом. Мы покажем использование этих подходов на примере алгоритмов Ran 2, Hybrid Taus и Lagged Fibonacci. Для проверки случайности полученных чисел мы использовали разработанные генераторы при моделировании динамики Ланжевена N независимых гармонических осцилляторов в термостате. Это позволило нам оценить статистические характеристики генераторов. Мы также исследовали производительность, использование памяти и ускорение, получаемое при переносе алгоритма с центрального на графический процессор.
Ключевые слова: псевдослучайные числа, графический процессор, генератор, молекулярное моделирование.
Efficient Pseudorandom number generators for biomolecular simulations on graphics processors
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 287-308Views (last year): 11. Citations: 2 (RSCI).Langevin Dynamics, Monte Carlo, and all-atom Molecular Dynamics simulations in implicit solvent require a reliable source of pseudorandom numbers generated at each step of calculation. We present the two main approaches for implementation of pseudorandom number generators on a GPU. In the first approach, inherent in CPU-based calculations, one PRNG produces a stream of pseudorandom numbers in each thread of execution, whereas the second approach builds on the ability of different threads to communicate, thus, sharing random seeds across the entire device. We exemplify the use of these approaches through the development of Ran2, Hybrid Taus, and Lagged Fibonacci algorithms. As an application-based test of randomness, we carry out LD simulations of N independent harmonic oscillators coupled to a stochastic thermostat. This model allows us to assess statistical quality of pseudorandom numbers. We also profile performance of these generators in terms of the computational time, memory usage, and the speedup factor (CPU/GPU time).
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"