Результаты поиска по 'вычислительные методы в физике':
Найдено статей: 53
  1. Плохотников К.Э.
    Проблема выбора решений при классическом формате описания молекулярной системы
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1573-1600

    Разработанные автором недавно численные методики расчета молекулярной системы на базе прямого решения уравнения Шрёдингера методом Монте-Карло показали огромную неопределенностьв выборе решений. С одной стороны, оказалось возможным построить множество новых решений, с другой стороны, резко обостриласьпроб лема их связывания с реальностью. В квантовомеханических расчетах ab initio проблема выбора решений стоит не так остро после перехода к классическому формату описания молекулярной системы в терминах потенциальной энергии, метода молекулярной динамики и пр. В данной работе исследуется проблема выбора решений при классическом формате описания молекулярной системы без учета квантовомеханических предпосылок. Как оказалось, проблема выбора решений при классическом формате описания молекулярной системы сводится к конкретной разметке конфигурационного пространства в виде набора стационарных точек и реконструкции соответствующей функции потенциальной энергии. В такой постановке решение проблемы выбора сводится к двум возможным физико-математическим задачам: по заданной функции потенциальной энергии найти все ее стационарные точки (прямая задача проблемы выбора), по заданному набору стационарных точек реконструироватьф ункцию потенциальной энергии (обратная задача проблемы выбора). В работе с помощью вычислительного эксперимента обсуждается прямая задача проблемы выбора на примере описания моноатомного кластера. Численно оцениваются число и форма локально равновесных (седловых) конфигураций бинарного потенциала. Вводится соответствующая мера по различению конфигураций в пространстве. Предлагается формат построения всей цепочки многочастичных вкладов в функцию потенциальной энергии: бинарный, трехчастичный и т.д., многочастичный потенциал максимальной частичности. Обсуждается и иллюстрируется бесконечное количество локально равновесных (седловых) конфигураций для максимально многочастичного потенциала. Предлагается методика вариации числа стационарных точек путем комбинирования многочастичных вкладов в функцию потенциальной энергии. Перечисленные выше результаты работы направлены на то, чтобы уменьшить тот огромный произвол выбора формы потенциала, который имеет место в настоящее время. Уменьшение произвола выбора выражается в том, что имеющиеся знания о вполне конкретном наборе стационарных точек согласуются с соответствующей формой функции потенциальной энергии.

    Plokhotnikov K.E.
    The problem of choosing solutions in the classical format of the description of a molecular system
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1573-1600

    The numerical methods developed by the author recently for calculating the molecular system based on the direct solution of the Schrodinger equation by the Monte Carlo method have shown a huge uncertainty in the choice of solutions. On the one hand, it turned out to be possible to build many new solutions; on the other hand, the problem of their connection with reality has become sharply aggravated. In ab initio quantum mechanical calculations, the problem of choosing solutions is not so acute after the transition to the classical format of describing a molecular system in terms of potential energy, the method of molecular dynamics, etc. In this paper, we investigate the problem of choosing solutions in the classical format of describing a molecular system without taking into account quantum mechanical prerequisites. As it turned out, the problem of choosing solutions in the classical format of describing a molecular system is reduced to a specific marking of the configuration space in the form of a set of stationary points and reconstruction of the corresponding potential energy function. In this formulation, the solution of the choice problem is reduced to two possible physical and mathematical problems: to find all its stationary points for a given potential energy function (the direct problem of the choice problem), to reconstruct the potential energy function for a given set of stationary points (the inverse problem of the choice problem). In this paper, using a computational experiment, the direct problem of the choice problem is discussed using the example of a description of a monoatomic cluster. The number and shape of the locally equilibrium (saddle) configurations of the binary potential are numerically estimated. An appropriate measure is introduced to distinguish configurations in space. The format of constructing the entire chain of multiparticle contributions to the potential energy function is proposed: binary, threeparticle, etc., multiparticle potential of maximum partiality. An infinite number of locally equilibrium (saddle) configurations for the maximum multiparticle potential is discussed and illustrated. A method of variation of the number of stationary points by combining multiparticle contributions to the potential energy function is proposed. The results of the work listed above are aimed at reducing the huge arbitrariness of the choice of the form of potential that is currently taking place. Reducing the arbitrariness of choice is expressed in the fact that the available knowledge about the set of a very specific set of stationary points is consistent with the corresponding form of the potential energy function.

  2. Митин Н.А., Орлов Ю.Н.
    Статистический анализ биграмм специализированных текстов
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 243-254

    Метод спектрального анализа стохастической матрицы применяется для построения индикатора, позволяющего определять тематику научных текстов без использования ключевых слов. Эта матрица представляет собой матрицу условных вероятностей биграмм, построенную по статистике используемых в тексте символов алфавита без учета пробелов, цифр и знаков препинания. Научные тексты классифицируются по взаимному расположению инвариантных подпространств матрицы условных вероятностей пар буквосочетаний. Индикатор разделения — величина косинуса угла между правым и левым собственными векторами, отвечающими максимальному и минимальному собственным значениям. Вычислительный алгоритм использует специальное представление параметра дихотомии, в качестве которого выступает интеграл от нормы квадрата резольвенты стохастической матрицы биграмм по окружности заданного радиуса в комплексной плоскости. Стремление интеграла в бесконечность свидетельствует о приближении контура интегрирования к собственному значению матрицы. В работе приведены типовые распределения индикатора идентификации специальностей. Для статистического анализа были проанализированы диссертации по основным 19 специальностям ВАК без учета классификации внутри специальности, по 20 текстов на специальность. Выяснилось, что эмпирические распределения косинуса угла для физико-математических и гуманитарных специальностей не имеют общего носителя, поэтому могут быть формально разделены по значению этого индикатора без ошибки. Хотя корпус текстов был не особенно большой, тем не менее при произвольном отборе диссертаций ошибка идентификации на уровне 2 % представляется очень хорошим результатом по сравнению с методами, основанными на семантическом анализе. Также выяснилось, что можно составить паттерн текста по каждой из специальностей в виде эталонной матрицы биграмм, по близости к которой в норме суммируемых функций можно безошибочно идентифицировать тематику написанного научного произведения, не используя ключевые слова. Предложенный метод можно использовать и в качестве сравнительного индикатора большей или меньшей строгости научного текста или как индикатор соответствия текста определенному научному уровню.

    Mitin N.A., Orlov Y.N.
    Statistical analysis of bigrams of specialized texts
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 243-254

    The method of the stochastic matrix spectrum analysis is used to build an indicator that allows to determine the subject of scientific texts without keywords usage. This matrix is a matrix of conditional probabilities of bigrams, built on the statistics of the alphabet characters in the text without spaces, numbers and punctuation marks. Scientific texts are classified according to the mutual arrangement of invariant subspaces of the matrix of conditional probabilities of pairs of letter combinations. The separation indicator is the value of the cosine of the angle between the right and left eigenvectors corresponding to the maximum and minimum eigenvalues. The computational algorithm uses a special representation of the dichotomy parameter, which is the integral of the square norm of the resolvent of the stochastic matrix of bigrams along the circumference of a given radius in the complex plane. The tendency of the integral to infinity testifies to the approximation of the integration circuit to the eigenvalue of the matrix. The paper presents the typical distribution of the indicator of identification of specialties. For statistical analysis were analyzed dissertations on the main 19 specialties without taking into account the classification within the specialty, 20 texts for the specialty. It was found that the empirical distributions of the cosine of the angle for the mathematical and Humanities specialties do not have a common domain, so they can be formally divided by the value of this indicator without errors. Although the body of texts was not particularly large, nevertheless, in the case of arbitrary selection of dissertations, the identification error at the level of 2 % seems to be a very good result compared to the methods based on semantic analysis. It was also found that it is possible to make a text pattern for each of the specialties in the form of a reference matrix of bigrams, in the vicinity of which in the norm of summable functions it is possible to accurately identify the theme of the written scientific work, without using keywords. The proposed method can be used as a comparative indicator of greater or lesser severity of the scientific text or as an indicator of compliance of the text to a certain scientific level.

  3. Голубев В.И., Шевченко А.В., Петров И.Б.
    Повышение порядка точности сеточно-характеристического метода для задач двумерной линейной упругости с помощью схем операторного расщепления
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 899-910

    Сеточно-характеристический метод успешно применяется для решения различных гиперболических систем уравнений в частных производных (например, уравнения переноса, акустики, линейной упругости). Он позволяет корректно строить алгоритмы на контактных границах и границах области интегрирования, в определенной степени учитывать физику задачи (распространение разрывов вдоль характеристических поверхностей), обладает важнымдля рассматриваемых задач свойством монотонности. В случае двумерных и трехмерных задач используется процедура расщепления по пространственным направлениям, позволяющая решить исходную систему путем последовательного решения нескольких одномерных систем. На настоящий момент во множестве работ используются схемы до третьего порядка точности при решении одномерных задач и простейшие схемы расщепления, которые в общем случае не позволяют получить порядок точности по времени выше второго. Значительное развитие получило направление операторного расщепления, доказана возможность повышения порядка сходимости многомерных схем. Его особенностью является необходимость выполнения шага в обратном направлении по времени, что порождает сложности, например, для параболических задач.

    В настоящей работе схемы расщепления 3-го и 4-го порядка были применены непосредственно к решению двумерной гиперболической системы уравнений в частных производных линейной теории упругости. Это позволило повысить итоговый порядок сходимости расчетного алгоритма. В работе эмпирически оценена сходимость по нормам $L_1$ и $L_\infty$ с использованиемана литических решений определяющей системы достаточной степени гладкости. Для получения объективных результатов рассмотрены случаи продольных и поперечных плоских волн, распространяющихся как вдоль диагонали расчетной ячейки, так и не вдоль нее. Проведенные численные эксперименты подтверждают повышение точности метода и демонстрируют теоретически ожидаемый порядок сходимости. При этом увеличивается в 3 и в 4 раза время моделирования (для схем 3-го и 4-го порядка соответственно), но не возрастает потребление оперативной памяти. Предложенное усовершенствование вычислительного алгоритма сохраняет простоту его параллельной реализации на основе пространственной декомпозиции расчетной сетки.

    Golubev V.I., Shevchenko A.V., Petrov I.B.
    Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 899-910

    The grid-characteristic method is successfully used for solving hyperbolic systems of partial differential equations (for example, transport / acoustic / elastic equations). It allows to construct correctly algorithms on contact boundaries and boundaries of the integration domain, to a certain extent to take into account the physics of the problem (propagation of discontinuities along characteristic curves), and has the property of monotonicity, which is important for considered problems. In the cases of two-dimensional and three-dimensional problems the method makes use of a coordinate splitting technique, which enables us to solve the original equations by solving several one-dimensional ones consecutively. It is common to use up to 3-rd order one-dimensional schemes with simple splitting techniques which do not allow for the convergence order to be higher than two (with respect to time). Significant achievements in the operator splitting theory were done, the existence of higher-order schemes was proved. Its peculiarity is the need to perform a step in the opposite direction in time, which gives rise to difficulties, for example, for parabolic problems.

    In this work coordinate splitting of the 3-rd and 4-th order were used for the two-dimensional hyperbolic problem of the linear elasticity. This made it possible to increase the final convergence order of the computational algorithm. The paper empirically estimates the convergence in L1 and L∞ norms using analytical solutions of the system with the sufficient degree of smoothness. To obtain objective results, we considered the cases of longitudinal and transverse plane waves propagating both along the diagonal of the computational cell and not along it. Numerical experiments demonstrated the improved accuracy and convergence order of constructed schemes. These improvements are achieved with the cost of three- or fourfold increase of the computational time (for the 3-rd and 4-th order respectively) and no additional memory requirements. The proposed improvement of the computational algorithm preserves the simplicity of its parallel implementation based on the spatial decomposition of the computational grid.

Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"