Результаты поиска по 'space marking':
Найдено статей: 6
  1. Lobanov A.I.
    Scientific and pedagogical schools founded by A. S. Kholodov
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579

    In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.

    The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.

    This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.

    On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).

    There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.

    The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.

    Views (last year): 42.
  2. Stepkin A.V.
    Using collective of agents for exploration of graph
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 525-532

    Problem of exploration finite undirected graphs by a collective of agents is considered in this work. Two agents-researchers simultaneously move on graph, they read and change marks of graph elements, transfer the information to the agent-experimenter (it builds explored graph representation). It was constructed an algorithm linear (from amount of the graph’s nodes) time complexity, quadratic space complexity and communication complexity, that is equal to O(n2·log(n)). Two agents (which move on graph) need two different colors (in total three colors) for graph exploration. An algorithm is based on depth-first traversal method.

    Views (last year): 4. Citations: 2 (RSCI).
  3. Stepkin A.V., Stepkina A.S.
    Algorithm of simple graph exploration by a collective of agents
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 33-45

    The study presented in the paper is devoted to the problem of finite graph exploration using a collective of agents. Finite non-oriented graphs without loops and multiple edges are considered in this paper. The collective of agents consists of two agents-researchers, who have a finite memory independent of the number of nodes of the graph studied by them and use two colors each (three colors are used in the aggregate) and one agentexperimental, who has a finite, unlimitedly growing internal memory. Agents-researches can simultaneously traverse the graph, read and change labels of graph elements, and also transmit the necessary information to a third agent — the agent-experimenter. An agent-experimenter is a non-moving agent in whose memory the result of the functioning of agents-researchers at each step is recorded and, also, a representation of the investigated graph (initially unknown to agents) is gradually built up with a list of edges and a list of nodes.

    The work includes detail describes of the operating modes of agents-researchers with an indication of the priority of their activation. The commands exchanged between agents-researchers and an agent-experimenter during the execution of procedures are considered. Problematic situations arising in the work of agentsresearchers are also studied in detail, for example, staining a white vertex, when two agents simultaneously fall into the same node, or marking and examining the isthmus (edges connecting subgraphs examined by different agents-researchers), etc. The full algorithm of the agent-experimenter is presented with a detailed description of the processing of messages received from agents-researchers, on the basis of which a representation of the studied graph is built. In addition, a complete analysis of the time, space, and communication complexities of the constructed algorithm was performed.

    The presented graph exploration algorithm has a quadratic (with respect to the number of nodes of the studied graph) time complexity, quadratic space complexity, and quadratic communication complexity. The graph exploration algorithm is based on the depth-first traversal method.

  4. Shleymovich M.P., Dagaeva M.V., Katasev A.S., Lyasheva S.A., Medvedev M.V.
    The analysis of images in control systems of unmanned automobiles on the base of energy features model
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 369-376

    The article shows the relevance of research work in the field of creating control systems for unmanned vehicles based on computer vision technologies. Computer vision tools are used to solve a large number of different tasks, including to determine the location of the car, detect obstacles, determine a suitable parking space. These tasks are resource intensive and have to be performed in real time. Therefore, it is important to develop effective models, methods and tools that ensure the achievement of the required time and accuracy for use in unmanned vehicle control systems. In this case, the choice of the image representation model is important. In this paper, we consider a model based on the wavelet transform, which makes it possible to form features characterizing the energy estimates of the image points and reflecting their significance from the point of view of the contribution to the overall image energy. To form a model of energy characteristics, a procedure is performed based on taking into account the dependencies between the wavelet coefficients of various levels and the application of heuristic adjustment factors for strengthening or weakening the influence of boundary and interior points. On the basis of the proposed model, it is possible to construct descriptions of images their characteristic features for isolating and analyzing, including for isolating contours, regions, and singular points. The effectiveness of the proposed approach to image analysis is due to the fact that the objects in question, such as road signs, road markings or car numbers that need to be detected and identified, are characterized by the relevant features. In addition, the use of wavelet transforms allows to perform the same basic operations to solve a set of tasks in onboard unmanned vehicle systems, including for tasks of primary processing, segmentation, description, recognition and compression of images. The such unified approach application will allow to reduce the time for performing all procedures and to reduce the requirements for computing resources of the on-board system of an unmanned vehicle.

    Views (last year): 31. Citations: 1 (RSCI).
  5. Plokhotnikov K.E.
    The problem of choosing solutions in the classical format of the description of a molecular system
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1573-1600

    The numerical methods developed by the author recently for calculating the molecular system based on the direct solution of the Schrodinger equation by the Monte Carlo method have shown a huge uncertainty in the choice of solutions. On the one hand, it turned out to be possible to build many new solutions; on the other hand, the problem of their connection with reality has become sharply aggravated. In ab initio quantum mechanical calculations, the problem of choosing solutions is not so acute after the transition to the classical format of describing a molecular system in terms of potential energy, the method of molecular dynamics, etc. In this paper, we investigate the problem of choosing solutions in the classical format of describing a molecular system without taking into account quantum mechanical prerequisites. As it turned out, the problem of choosing solutions in the classical format of describing a molecular system is reduced to a specific marking of the configuration space in the form of a set of stationary points and reconstruction of the corresponding potential energy function. In this formulation, the solution of the choice problem is reduced to two possible physical and mathematical problems: to find all its stationary points for a given potential energy function (the direct problem of the choice problem), to reconstruct the potential energy function for a given set of stationary points (the inverse problem of the choice problem). In this paper, using a computational experiment, the direct problem of the choice problem is discussed using the example of a description of a monoatomic cluster. The number and shape of the locally equilibrium (saddle) configurations of the binary potential are numerically estimated. An appropriate measure is introduced to distinguish configurations in space. The format of constructing the entire chain of multiparticle contributions to the potential energy function is proposed: binary, threeparticle, etc., multiparticle potential of maximum partiality. An infinite number of locally equilibrium (saddle) configurations for the maximum multiparticle potential is discussed and illustrated. A method of variation of the number of stationary points by combining multiparticle contributions to the potential energy function is proposed. The results of the work listed above are aimed at reducing the huge arbitrariness of the choice of the form of potential that is currently taking place. Reducing the arbitrariness of choice is expressed in the fact that the available knowledge about the set of a very specific set of stationary points is consistent with the corresponding form of the potential energy function.

  6. Mitin N.A., Orlov Y.N.
    Statistical analysis of bigrams of specialized texts
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 243-254

    The method of the stochastic matrix spectrum analysis is used to build an indicator that allows to determine the subject of scientific texts without keywords usage. This matrix is a matrix of conditional probabilities of bigrams, built on the statistics of the alphabet characters in the text without spaces, numbers and punctuation marks. Scientific texts are classified according to the mutual arrangement of invariant subspaces of the matrix of conditional probabilities of pairs of letter combinations. The separation indicator is the value of the cosine of the angle between the right and left eigenvectors corresponding to the maximum and minimum eigenvalues. The computational algorithm uses a special representation of the dichotomy parameter, which is the integral of the square norm of the resolvent of the stochastic matrix of bigrams along the circumference of a given radius in the complex plane. The tendency of the integral to infinity testifies to the approximation of the integration circuit to the eigenvalue of the matrix. The paper presents the typical distribution of the indicator of identification of specialties. For statistical analysis were analyzed dissertations on the main 19 specialties without taking into account the classification within the specialty, 20 texts for the specialty. It was found that the empirical distributions of the cosine of the angle for the mathematical and Humanities specialties do not have a common domain, so they can be formally divided by the value of this indicator without errors. Although the body of texts was not particularly large, nevertheless, in the case of arbitrary selection of dissertations, the identification error at the level of 2 % seems to be a very good result compared to the methods based on semantic analysis. It was also found that it is possible to make a text pattern for each of the specialties in the form of a reference matrix of bigrams, in the vicinity of which in the norm of summable functions it is possible to accurately identify the theme of the written scientific work, without using keywords. The proposed method can be used as a comparative indicator of greater or lesser severity of the scientific text or as an indicator of compliance of the text to a certain scientific level.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"