All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Управление движением жесткого тела в вязкой жидкости
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 659-675Решена задача оптимального управления движением мобильного объекта с внешней жесткой оболочкой вдользаданной траектории в вязкой жидкости. Рассматриваемый мобильный робот обладает свойством самопродвижения. Самопродвижение осуществляется за счет возвратнопоступательных колебаний внутренней материальной точки. Оптимальное управление движением построено на основе системы нечеткого логического вывода Сугено. Для получения базы нечетких правил предложен подход, основанный на построении деревьев решений с помощью разработанного генетического алгоритма структурно-параметрического синтеза.
Ключевые слова: оптимальное управление движением, самопродвижение, генетический алгоритм, структурно-параметрический синтез, деревья решений, нечеткая логика.
Motion control of a rigid body in viscous fluid
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 659-675Views (last year): 2. Citations: 1 (RSCI).We consider the optimal motion control problem for a mobile device with an external rigid shell moving along a prescribed trajectory in a viscous fluid. The mobile robot under consideration possesses the property of self-locomotion. Self-locomotion is implemented due to back-and-forth motion of an internal material point. The optimal motion control is based on the Sugeno fuzzy inference system. An approach based on constructing decision trees using the genetic algorithm for structural and parametric synthesis has been proposed to obtain the base of fuzzy rules.
-
Эффективное и безошибочное сокрытие информации в гибридном домене цифровых изображений с использованием метаэвристической оптимизации
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 197-210Сокрытие информации в цифровых изображениях является перспективным направлением кибербезопасности. Методы стеганографии обеспечивают незаметную передачу данных по открытому каналу связи втайне от злоумышленника. Эффективность встраивания информации зависит от того, насколько незаметным и робастным является скрытое вложение, а также от емкости встраивания. Однако показатели качества встраивания являются взаимно обратными и улучшение значения одного из них обычно приводит к ухудшению остальных. Баланс между ними может быть достигнут с помощью применения метаэвристической оптимизации. Метаэвристики позволяют находить оптимальные или близкие к ним решения для многих задач, в том числе трудно формализуемых, моделируя разные природные процессы, например эволюцию видов или поведение животных. В этой статье предлагается новый подход к сокрытию данных в гибридном пространственно-частотном домене цифровых изображений на основе метаэвристической оптимизации. В качестве операции встраивания выбрано изменение блока пикселей изображения в соответствии с некоторой матрицей изменений. Матрица изменений выбирается адаптивно для каждого блока с помощью алгоритмов метаэвристической оптимизации. В работе сравнивается эффективность трех метаэвристик, таких как генетический алгоритм (ГА), оптимизация роя частиц (ОРЧ) и дифференциальная эволюция (ДЭ), для поиска лучшей матрицы изменений. Результаты экспериментов показывают, что новый подход обеспечивает высокую незаметность встраивания, высокую емкость и безошибочное извлечение встроенной информации. При этом хранение и передача матриц изменений для каждого блока не требуются для извлечения данных, что уменьшает вероятность обнаружения скрытого вложения злоумышленником. Метаэвристики обеспечили прирост показателей незаметности и емкости по сравнению с предшествующим алгоритмом встраивания данных в коэффициенты дискретного косинусного преобразования по методу QIM [Evsutin, Melman, Meshcheryakov, 2021] соответственно на 26,02% и 30,18% для ГА, на 26,01% и 19,39% для ОРЧ, на 27,30% и 28,73% для ДЭ.
Ключевые слова: стеганография, цифровые изображения, метаэвристическая оптимизация, генетический алгоритм, дифференциальная эволюция, оптимизация роя частиц.
Efficient and error-free information hiding in the hybrid domain of digital images using metaheuristic optimization
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 197-210Data hiding in digital images is a promising direction of cybersecurity. Digital steganography methods provide imperceptible transmission of secret data over an open communication channel. The information embedding efficiency depends on the embedding imperceptibility, capacity, and robustness. These quality criteria are mutually inverse, and the improvement of one indicator usually leads to the deterioration of the others. A balance between them can be achieved using metaheuristic optimization. Metaheuristics are a class of optimization algorithms that find an optimal, or close to an optimal solution for a variety of problems, including those that are difficult to formalize, by simulating various natural processes, for example, the evolution of species or the behavior of animals. In this study, we propose an approach to data hiding in the hybrid spatial-frequency domain of digital images based on metaheuristic optimization. Changing a block of image pixels according to some change matrix is considered as an embedding operation. We select the change matrix adaptively for each block using metaheuristic optimization algorithms. In this study, we compare the performance of three metaheuristics such as genetic algorithm, particle swarm optimization, and differential evolution to find the best change matrix. Experimental results showed that the proposed approach provides high imperceptibility of embedding, high capacity, and error-free extraction of embedded information. At the same time, storage of change matrices for each block is not required for further data extraction. This improves user experience and reduces the chance of an attacker discovering the steganographic attachment. Metaheuristics provided an increase in imperceptibility indicator, estimated by the PSNR metric, and the capacity of the previous algorithm for embedding information into the coefficients of the discrete cosine transform using the QIM method [Evsutin, Melman, Meshcheryakov, 2021] by 26.02% and 30.18%, respectively, for the genetic algorithm, 26.01% and 19.39% for particle swarm optimization, 27.30% and 28.73% for differential evolution.
-
Решение задачи оптимизации схемы размещения производства древесных видов топлива по критерию себестоимости тепловой энергии
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 651-659Представлена математическая модель задачи оптимального размещения предприятий по производству топлива из возобновляемых древесных отходов для обеспечения распределенной системы теплоснабжения региона. Оптимизация осуществляется исходя из минимизации совокупных затрат на производство конечного продукта – тепловой энергии на основе древесного топлива. Предложен метод решения задачи с использованием генетического алгоритма. Приведены практические результаты применения модели на примере Удмуртской Республики.
Ключевые слова: размещение производства, математическая модель, оптимизация, древесное топливо, тепловая энергия, генетический алгоритм.
Solution of optimization problem of wood fuel facility location by the thermal energy cost criterion
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 651-659Views (last year): 5. Citations: 2 (RSCI).The paper contains a mathematical model for the optimal location of enterprises producing fuel from renewable wood waste for the regional distributed heating supply system. Optimization is based on total cost minimization of the end product – the thermal energy from wood fuel. A method for solving the problem is based on genetic algorithm. The paper also shows the practical results of the model by example of Udmurt Republic.
-
Решение логистической задачи топливоснабжения распределенной региональной системы теплоснабжения
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 451-470Предложена методика решения задачи логистики топливоснабжения региона, включающая в себя взаимосвязанные задачи маршрутизации, кластеризации, оптимального распределения ресурсов и управления запасами. Расчеты проведены на примере системы топливоснабжения Удмуртской Республики.
Ключевые слова: логистика, топливоснабжение, маршрутизация, кластеризация, оптимизация, управление запасами, генетический алгоритм.
The solution of the logistics task of fuel supply for the regional distributed heat supply system
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 451-470Views (last year): 1. Citations: 6 (RSCI).The technique for solving the logistic task of fuel supply in the region, including the interconnected tasks of routing, clustering, optimal distribution of resources and stock control is proposed. The calculations have been carried out on the example of fuel supply system of the Udmurt Republic.
-
Неоднородные клеточные генетические алгоритмы
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 775-780В работе вводится в рассмотрение понятие неоднородного клеточного генетического алгоритма, в котором ряд параметров, влияющих на работу генетических операторов, оказывается зависимым от местоположения клеток заданного клеточного пространства. Приводятся результаты численного сравнения неоднородных клеточных генетических алгоритмов со стандартными вариантами генетических алгоритмов, показывающие преимущества предложенного подхода при минимизации мультимодальных функций с большим числом локальных экстремумов. Рассматривается крупноблочная параллельная реализация неоднородных клеточных алгоритмов с использованием технологии MPI.
Non-uniform cellular genetic algorithms
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 775-780Views (last year): 9. Citations: 3 (RSCI).In this paper, we introduce the concept of non-uniform cellular genetic algorithm, in which a number of parameters that affect the operation of genetic operators is dependent on the location of the cells of a given cellular space. The results of numerical comparison of non-uniform cellular genetic algorithms with the standard genetic algorithms, showing the advantages of the proposed approach while minimizing multimodal functions with a large number of local extrema, are presented. The coarse-grained parallel implementation of the non-uniform algorithms using the technology of MPI is considered.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"