Результаты поиска по 'действие электрических полей':
Найдено статей: 6
  1. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 719-720
    Editor's note
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 719-720
    Views (last year): 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
    Editor's note
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 5-8
  3. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 5-7
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 5-7
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 581-584
  5. Долуденко А.Н., Куликов Ю.М., Панов В.А., Савельев А.С., Терешонок Д.В.
    Развитие неустойчивости границы раздела «вода – масло» в вертикальном электрическом поле
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 633-645

    Наличие контактной границы между водой и маслом сильно снижает электрическую прочность масляной фазы. Присутствие электрического поля приводит к различной степени поляризации на границе раздела и появлению силы, действующей на жидкость с большей диэлектрической проницаемостью (вода) в направлении жидкости с меньшей диэлектрической проницаемостью (масло), что приводит к развитию неустойчивости контактной поверхности. Неустойчивость в результате своего развития приводит к вытягиванию струйки воды в толщу масла и нарушению изоляционного промежутка.

    В настоящей работе экспериментально и численно исследуется электрогидродинамическая неустойчивость на границе фаз «электропроводящая вода – трансформаторное масло» в сильно неоднородном электрическом поле, направленном перпендикулярно контактной границе. Представлены результаты натурного и численного эксперимента по исследованию развития электрогидродинамической неустойчивости в сильном электрическом поле на границе раздела воды и трансформаторного масла, приводящей к деформации этой границы жидкостей. Система состоит из шарообразного электрода радиусом 3,5 мм, помещенного в воду проводимостью 5 мкСм/см, и тонкого электрода-лезвия толщиной 0,1 мм, помещенного в трансформаторное масло марки ГК. Контактная граница проходит на одинаковом расстоянии от ближайших точек электродов, равном 3 мм. В работе показано, что при некоторой напряженности электрического поля происходит рост конусообразной структуры воды в сторону электрода, погруженного в трансформаторное масло. Численно получено соответствие как формы образующейся водной структуры (конуса) в течение всего времени роста, так и размера, отсчитываемого от ее вершины до уровня начальной контактной границы разделения фаз. Исследована динамика роста данной структуры. И в численном расчете, и в эксперименте обнаружено, что размер образующегося конуса вдоль линии соединения электродов линейно зависит от времени.

    Doludenko A.N., Kulikov Y.M., Panov V.A., Saveliev A.S., Tereshonok D.V.
    Development of the water – oil interface instability in a vertical electric field
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 633-645

    The presence of a contact boundary between water and transformer oil greatly reduces the electrical strength of the oil phase. The presence of an electric field leads to varying degrees of polarization at the interface and the appearance of a force acting on a liquid with a higher dielectric constant (water) in the direction of a liquid with a lower dielectric constant (oil). This leads to the contact surface instability development. Instability as a result of its development leads to a stream of water being drawn into oil volume and a violation of the insulating gap. In this work, we experimentally and numerically study electrohydrodynamic instability at the phase boundary between electrically weakly conductive water and transformer oil in a highly inhomogeneous electric field directed perpendicular to the contact boundary. The results of a full-scale and numerical experiment of studying of the electrohydrodynamic instability development in a strong electric field at the interface between water and transformer oil are presented. The system consists of a spherical electrode with a radius of 3.5 mm, placed in water with a conductivity of 5 $\mu S/cm$, and a thin blade electrode 0.1 mm thick, placed in transformer oil of the GK brand. The contact boundary passes at the same distance from the nearest points of the electrodes, equal to 3 mm. The work shows that at a certain electric field strength, the cone-shaped structure of water grows towards the electrode immersed in transformer oil. A numerical correspondence was obtained for both the shape of the resulting water structure (cone) during the entire growth time and the size measured from its top to the level of the initial contact boundary of phase separation. The dynamics of this structure growth has been studied. Both in numerical calculations and in experiment, it was found that the size of the resulting cone along the electrode connection line depends linearly on time.

  6. Демлов П., Люнгфириа Х., Мюллер С.К.
    Эффекты воздействия электрического поля на химические структуры
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 705-718

    Волны возбуждения являются прообразом самоорганизующихся динамических структур в неравновесных системах. Они характеризуются своей собственной внутренней динамикой, приводящей к формированию бегущих волн различных типов и форм. Яркие примеры — это вращающиеся спирали и скрученные свитки. Интересная и сложная задача — найти способы управления их поведением, применяя внешние сигналы, влияющие на распространяющиеся волны. В качестве такого воздействия мы используем внешние электрические поля, наложенные на возбудимую реакцию Белоусова–Жаботинского (БЖ). Существенные эффекты влияния полей на волны включают изменение скорости волны, обращение направления распространения, взаимное уничтожение вращающихся в противоположных направлениях спиральных волн и переориентацию нитей скрученных свитков. Эти эффекты могут быть объяснены в численных экспериментах, при этом существенную роль играет отрицательно заряженный ингибиторбромид. Эффекты электрического поля также были исследованы в биологических возбудимых средах, таких как социальные амебы Dictyostelium discoideum. Совсем недавно мы начали исследовать влияние электрического поля на реакцию БЖ, протекающую в водно-масляной микроэмульсии. Удалось наблюдать дрейф сложных структур, а также изменение вязкости и электрической проводимости. Мы обсуждаем предположение, что эта система может выступать в качестве модели для дальнодействующего взаимодействия между нейронами.

    Dähmlow P., Luengviria C., Müller S.C.
    Electric field effects in chemical patterns
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 705-718

    Excitation waves are a prototype of self-organized dynamic patterns in non-equilibrium systems. They develop their own intrinsic dynamics resulting in travelling waves of various forms and shapes. Prominent examples are rotating spirals and scroll waves. It is an interesting and challenging task to find ways to control their behavior by applying external signals, upon which these propagating waves react. We apply external electric fields to such waves in the excitable Belousov–Zhabotinsky (BZ) reaction. Remarkable effects include the change of wave speed, reversal of propagation direction, annihilation of counter-rotating spiral waves and reorientation of scroll wave filaments. These effects can be explained in numerical simulations, where the negatively charged inhibitor bromide plays an essential role. Electric field effects have also been investigated in biological excitable media such as the social amoebae Dictyostelium discoideum. Quite recently we have started to investigate electric field effect in the BZ reaction dissolved in an Aerosol OT water-in-oil microemulsion. A drift of complex patterns can be observed, and also the viscosity and electric conductivity change. We discuss the assumption that this system can act as a model for long range communication between neurons.

    Views (last year): 8.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"