All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Features of numerical solutions of some problems for cnoidal waves as periodic solutions of the Korteweg – de Vries
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 885-901This article discusses the features of the numerical solutions of some problems for cnoidal waves, which are periodic solutions of the classical Korteweg – de Vries equation of the traveling wave type. Exact solutions describing these waves were obtained by communicating the autowave approximation of the Korteweg – de Vries equation to ordinary functions of the third, second, and finally, first orders. Referring to a numerical example shows that in this way ordinary differential equations are not equivalent. The theorem formulated and proved in this article and the remark to it include the set of solutions of the first and second order, which, in their ordinal, are not equivalent. The ordinary differential equation of the first order obtained by the autowave approximation for the description of a cnoidal wave (a periodic solution) and a soliton (a solitary wave). Despite this, from a computational point of view, this equation is the most inconvenient. For this equation, the Lipschitz condition for the sought-for function is not satisfied in the neighborhood of constant solutions. Hence, the existence theorem and the unique solutions of the Cauchy problem for an ordinary differential equation of the first order are not valid. In particular, the uniqueness of the solution to the Cauchy problem is violated at stationary points. Therefore, for an ordinary differential equation of the first order, obtained from the Korteweg – de Vries equation, both in the case of a cnoidal wave and in the case of a soliton, the Cauchy problem cannot be posed at the extremum points. The first condition can be a set position between adjacent extremum points. But for the second, third and third orders, the initial conditions can be set at the growth points and at the extremum points. In this case, the segment for the numerical solution greatly expands and periodicity is observed. For the solutions of these ordinary solutions, the statements of the Cauchy problems are studied, and the results are compared with exact solutions and with each other. A numerical realization of the transformation of a cnoidal wave into a soliton is shown. The results of the article have a hemodynamic interpretation of the pulsating blood flow in a cylindrical blood vessel consisting of elastic rings.
-
Investigation of Turing structures formation under the influence of wave instability
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 397-412Views (last year): 21.A classical for nonlinear dynamics model, Brusselator, is considered, being augmented by addition of a third variable, which plays the role of a fast-diffusing inhibitor. The model is investigated in one-dimensional case in the parametric domain, where two types of diffusive instabilities of system’s homogeneous stationary state are manifested: wave instability, which leads to spontaneous formation of autowaves, and Turing instability, which leads to spontaneous formation of stationary dissipative structures, or Turing structures. It is shown that, due to the subcritical nature of Turing bifurcation, the interaction of two instabilities in this system results in spontaneous formation of stationary dissipative structures already before the passage of Turing bifurcation. In response to different perturbations of spatially uniform stationary state, different stable regimes are manifested in the vicinity of the double bifurcation point in the parametric region under study: both pure regimes, which consist of either stationary or autowave dissipative structures; and mixed regimes, in which different modes dominate in different areas of the computational space. In the considered region of the parametric space, the system is multistable and exhibits high sensitivity to initial noise conditions, which leads to blurring of the boundaries between qualitatively different regimes in the parametric region. At that, even in the area of dominance of mixed modes with prevalence of Turing structures, the establishment of a pure autowave regime has significant probability. In the case of stable mixed regimes, a sufficiently strong local perturbation in the area of the computational space, where autowave mode is manifested, can initiate local formation of new stationary dissipative structures. Local perturbation of the stationary homogeneous state in the parametric region under investidation leads to a qualitatively similar map of established modes, the zone of dominance of pure autowave regimes being expanded with the increase of local perturbation amplitude. In two-dimensional case, mixed regimes turn out to be only transient — upon the appearance of localized Turing structures under the influence of wave regime, they eventually occupy all available space.
-
Electric field effects in chemical patterns
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 705-718Views (last year): 8.Excitation waves are a prototype of self-organized dynamic patterns in non-equilibrium systems. They develop their own intrinsic dynamics resulting in travelling waves of various forms and shapes. Prominent examples are rotating spirals and scroll waves. It is an interesting and challenging task to find ways to control their behavior by applying external signals, upon which these propagating waves react. We apply external electric fields to such waves in the excitable Belousov–Zhabotinsky (BZ) reaction. Remarkable effects include the change of wave speed, reversal of propagation direction, annihilation of counter-rotating spiral waves and reorientation of scroll wave filaments. These effects can be explained in numerical simulations, where the negatively charged inhibitor bromide plays an essential role. Electric field effects have also been investigated in biological excitable media such as the social amoebae Dictyostelium discoideum. Quite recently we have started to investigate electric field effect in the BZ reaction dissolved in an Aerosol OT water-in-oil microemulsion. A drift of complex patterns can be observed, and also the viscosity and electric conductivity change. We discuss the assumption that this system can act as a model for long range communication between neurons.
-
Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293Views (last year): 16. Citations: 3 (RSCI).Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.
-
Pattern formation of a three-species predator – prey model with prey-taxis and omnivorous predator
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1617-1634The spatiotemporal dynamics of a three-component model for food web is considered. The model describes the interactions among resource, prey and predator that consumes both species. In a previous work, the author analyzed the model without taking into account spatial heterogeneity. This study continues the model study of the community considering the diffusion of individuals, as well as directed movements of the predator. It is assumed that the predator responds to the spatial change in the resource and prey density by occupying areas where species density is higher or avoiding them. Directed predator movement is described by the advection term, where velocity is proportional to the gradient of resource and prey density. The system is considered on a one-dimensional domain with zero-flux conditions as boundary ones. The spatiotemporal dynamics produced by model is determined by the system stability in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations. The paper analyzes the possibility of wave instability leading to the emergence of autowaves and Turing instability, as a result of which stationary patterns are formed. Sufficient conditions for the existence of both types of instability are obtained. The influence of local kinetic parameters on the spatial structure formation was analyzed. It was shown that only Turing instability is possible when taxis on the resource is positive, but with a negative taxis, both types of instability are possible. The numerical solution of the system was found by using method of lines (MOL) with the numerical integration of ODE system by means of splitting techniques. The spatiotemporal dynamics of the system is presented in several variants, realizing one of the instability types. In the case of a positive taxis on the prey, both autowave and stationary structures are formed in smaller regions, with an increase in the region size, Turing structures are not formed. For negative taxis on the prey, stationary patterns is observed in both regions, while periodic structures appear only in larger areas.
-
Spatio-temporal models of ICT diffusion
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1695-1712The article proposes a space-time approach to modeling the diffusion of information and communication technologies based on the Fisher –Kolmogorov– Petrovsky – Piskunov equation, in which the diffusion kinetics is described by the Bass model, which is widely used to model the diffusion of innovations in the market. For this equation, its equilibrium positions are studied, and based on the singular perturbation theory, was obtained an approximate solution in the form of a traveling wave, i. e. a solution that propagates at a constant speed while maintaining its shape in space. The wave speed shows how much the “spatial” characteristic, which determines the given level of technology dissemination, changes in a single time interval. This speed is significantly higher than the speed at which propagation occurs due to diffusion. By constructing such an autowave solution, it becomes possible to estimate the time required for the subject of research to achieve the current indicator of the leader.
The obtained approximate solution was further applied to assess the factors affecting the rate of dissemination of information and communication technologies in the federal districts of the Russian Federation. Various socio-economic indicators were considered as “spatial” variables for the diffusion of mobile communications among the population. Growth poles in which innovation occurs are usually characterized by the highest values of “spatial” variables. For Russia, Moscow is such a growth pole; therefore, indicators of federal districts related to Moscow’s indicators were considered as factor indicators. The best approximation to the initial data was obtained for the ratio of the share of R&D costs in GRP to the indicator of Moscow, average for the period 2000–2009. It was found that for the Ural Federal District at the initial stage of the spread of mobile communications, the lag behind the capital was less than one year, for the Central Federal District, the Northwestern Federal District — 1.4 years, for the Volga Federal District, the Siberian Federal District, the Southern Federal District and the Far Eastern Federal District — less than two years, in the North Caucasian Federal District — a little more 2 years. In addition, estimates of the delay time for the spread of digital technologies (intranet, extranet, etc.) used by organizations of the federal districts of the Russian Federation from Moscow indicators were obtained.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"