All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Semiclassical solutions localized in a neighborhood of a circle for the Gross–Pitaevskii equation
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 359-365Citations: 1 (RSCI).Non-collapsing soliton-like wave functions are shown to exist in semiclassical approximation for the Bose-Einstein condensate model based on the Gross–Pitaevskii equation with attractive nonlinearity and external field of magnetic trap of special form.
-
Features of numerical solutions of some problems for cnoidal waves as periodic solutions of the Korteweg – de Vries
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 885-901This article discusses the features of the numerical solutions of some problems for cnoidal waves, which are periodic solutions of the classical Korteweg – de Vries equation of the traveling wave type. Exact solutions describing these waves were obtained by communicating the autowave approximation of the Korteweg – de Vries equation to ordinary functions of the third, second, and finally, first orders. Referring to a numerical example shows that in this way ordinary differential equations are not equivalent. The theorem formulated and proved in this article and the remark to it include the set of solutions of the first and second order, which, in their ordinal, are not equivalent. The ordinary differential equation of the first order obtained by the autowave approximation for the description of a cnoidal wave (a periodic solution) and a soliton (a solitary wave). Despite this, from a computational point of view, this equation is the most inconvenient. For this equation, the Lipschitz condition for the sought-for function is not satisfied in the neighborhood of constant solutions. Hence, the existence theorem and the unique solutions of the Cauchy problem for an ordinary differential equation of the first order are not valid. In particular, the uniqueness of the solution to the Cauchy problem is violated at stationary points. Therefore, for an ordinary differential equation of the first order, obtained from the Korteweg – de Vries equation, both in the case of a cnoidal wave and in the case of a soliton, the Cauchy problem cannot be posed at the extremum points. The first condition can be a set position between adjacent extremum points. But for the second, third and third orders, the initial conditions can be set at the growth points and at the extremum points. In this case, the segment for the numerical solution greatly expands and periodicity is observed. For the solutions of these ordinary solutions, the statements of the Cauchy problems are studied, and the results are compared with exact solutions and with each other. A numerical realization of the transformation of a cnoidal wave into a soliton is shown. The results of the article have a hemodynamic interpretation of the pulsating blood flow in a cylindrical blood vessel consisting of elastic rings.
-
Excitement of solitons in the interaction of kinks of sine-Gordon equation with attracting impurity
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 509-520Citations: 5 (RSCI).We investigate analytically and numerically the structure and properties of localized two- and three-kink solutions of the sine-Gordon equation, which are excited in the region of the attracting impurity. We have considered cases of single and double spatially extended impurity.
-
Buckling problems of thin elastic shells
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 775-787Views (last year): 23.The article covers several mathematical problems relating to elastic stability of thin shells in view of inconsistencies that have been recently identified between the experimental data and the predictions based on the shallow- shell theory. It is highlighted that the contradictions were caused by new algorithms that enabled updating the values of the so called “low critical stresses” calculated in the 20th century and adopted as a buckling criterion for thin shallow shells by technical standards. The new calculations often find the low critical stress close to zero. Therefore, the low critical stress cannot be used as a safety factor for the buckling analysis of the thinwalled structure, and the equations of the shallow-shell theory need to be replaced with other differential equations. The new theory also requires a buckling criterion ensuring the match between calculations and experimental data.
The article demonstrates that the contradiction with the new experiments can be resolved within the dynamic nonlinear three-dimensional theory of elasticity. The stress when bifurcation of dynamic modes occurs shall be taken as a buckling criterion. The nonlinear form of original equations causes solitary (solitonic) waves that match non-smooth displacements (patterns, dents) of the shells. It is essential that the solitons make an impact at all stages of loading and significantly increase closer to bifurcation. The solitonic solutions are illustrated based on the thin cylindrical momentless shell when its three-dimensional volume is simulated with twodimensional surface of the set thickness. It is noted that the pattern-generating waves can be detected (and their amplitudes can by identified) with acoustic or electromagnetic devices.
Thus, it is technically possible to reduce the risk of failure of the thin shells by monitoring the shape of the surface with acoustic devices. The article concludes with a setting of the mathematical problems requiring the solution for the reliable numerical assessment of the buckling criterion for thin elastic shells.
-
Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 855-868In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.
-
Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.
Keywords: discrete maps, integral transforms, solitons, vortices, switching waves, vortex lattices, chaos, turbulence. -
Control of the dynamics of the kink of the modified sine-Gordon equation by the external exposure with varying parameters
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 821-834Views (last year): 2. Citations: 4 (RSCI).The paper presents results that confirm the ability to control the movement of the kink of the modified sine-Gordon equation with variable external force parameters. Three types of external influences have been considered: permanent action, periodic action with a constant frequency and a frequency-modulated periodic exposure. The dependences of the position and velocity of the kink on time for various values of the parameters of external influence were obtained using the method of McLaughlin and Scott. It is shown that by changing the settings, one can adjust the velocity and direction of movement of the kink.
-
Nonlinear supratransmission in a Pt3Al crystal at intense external influence
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 109-117Views (last year): 18.The effect of the nonlinear supratransmission in crystal of A3B stoichiometry is studied by molecular dynamics on the example of Pt3Al alloy. This effect is the transfer of energy at frequencies outside the phonon spectrum of the crystal. Research of the mechanisms of energy transport from the material surface to the interior is the important task, both from the theoretical point of view and from the prospects for practical application in the modification of near-surface layers by treatment with intense external influence of various types. The model was a three-dimensional face-centered cubic crystal whose atoms interact by means of the multiparticle potential obtained by the embedded atom method, which provides greater realism of the model in comparison with the use of pair potentials. Various forms of oscillation of the external influence region are considered. The possibility of energy transport from the crystal surface to the interior is shown by excitation of quasi-breathers near the region of influence and their subsequent destruction in the crystal and scattering of the energy stored on them. The quasibreathers are high-amplitude nonlinear atoms' oscillations of the alloy lightweight component at frequencies outside the phonon spectrum of the crystal. This effect was observed not with every oscillation's form of the region of influence. Quasi-breathers appeared most intensely near the region of influence with sinusoidal form oscillations. The results obtained indicate that the contribution of quasi-breathers to the energy transfer through the crystal increases with increasing amplitude of the influence. The range of amplitudes from 0.05 to 0.5 Å is considered. The frequency of the influence varied from 0.2 to 15 THz, which ensured the coverage of the entire spectrum of lowamplitude oscillations for this crystal's model. The minimum magnitude of the external effect amplitude at which this effect was observed was found to be 0.15 Å. At amplitudes greater than 0.5 Å, the cell rapidly decays for frequencies close to the optical branch of the phonon spectrum. The results of the study can be useful for laser processing of materials, surface treatment by low-energy plasma, and also in radiation materials science.
-
The effect of nonlinear supratransmission in discrete structures: a review
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.
The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.
Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.
-
Approximate model of an axisymmetric flow of a non-compressible fluid in an infinitely long circular cylinder, the walls of which are composed of elastic rings, based on solutions of the Korteweg – de Vries equation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 375-394An approximate mathematical model of blood flow in an axisymmetric blood vessel is studied. Such a vessel is understood as an infinitely long circular cylinder, the walls of which consist of elastic rings. Blood is considered as an incompressible fluid flowing in this cylinder. Increased pressure causes radially symmetrical stretching of the elastic rings. Following J. Lamb, the rings are located close to each other so that liquid does not flow between them. To mentally realize this, it is enough to assume that the rings are covered with an impenetrable film that does not have elastic properties. Only rings have elasticity. The considered model of blood flow in a blood vessel consists of three equations: the continuity equation, the law of conservation of momentum and the equation of state. An approximate procedure for reducing the equations under consideration to the Korteweg – de Vries (KdV) equation is considered, which was not fully considered by J. Lamb, only to establish the dependence of the coefficients of the KdV equation on the physical parameters of the considered model of incompressible fluid flow in an axisymmetric vessel. From the KdV equation, by a standard transition to traveling waves, ODEs of the third, second and first orders are obtained, respectively. Depending on the different cases of arrangement of the three stationary solutions of the first-order ODE, a cnoidal wave and a soliton are standardly obtained. The main attention is paid to an unbounded periodic solution, which we call a degenerate cnoidal wave. Mathematically, cnoidal waves are described by elliptic integrals with parameters defining amplitudes and periods. Soliton and degenerate cnoidal wave are described by elementary functions. The hemodynamic meaning of these types of decisions is indicated. Due to the fact that the sets of solutions to first-, second- and third-order ODEs do not coincide, it has been established that the Cauchy problem for second- and third-order ODEs can be specified at all points, and for first-order ODEs only at points of growth or decrease. The Cauchy problem for a first-order ODE cannot be specified at extremum points due to the violation of the Lipschitz condition. The degeneration of the cnoidal wave into a degenerate cnoidal wave, which can lead to rupture of the vessel walls, is numerically illustrated. The table below describes two modes of approach of a cnoidal wave to a degenerate cnoidal wave.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"