All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 6.
- Views (last year): 29.
-
Сравнение сложных динамических систем на основе топологического анализа данных
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 513-525В работе рассматривается возможность сравнения и классификации динамических систем на основе топологического анализа данных. Определение мер взаимодействия между каналами динамических систем на основе методов HIIA (Hankel Interaction Index Array) и PM (Participation Matrix) позволяет построить графы HIIA и PM и их матрицы смежности. Для любой линейной динамической системы может быть построен аппроксимирующий ориентированный граф, вершины которого соответствуют компонентам вектора состояния динамической системы, а дуги — мерам взаимного влияния компонент вектора состояния. Построение меры расстояния (близости) между графами различных динамических систем имеет важное значение, например для идентификации штатного функционирования или отказов динамической системы или системы управления. Для сравнения и классификации динамических систем в работе предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам, с весами ребер, соответствующими мерам взаимодействия между каналами динамической системы. На основе методов HIIA и PM определяются матрицы мер взаимодействия между каналами динамических систем. В работе приведены примеры формирования взвешенных ориентированных графов для различных динамических систем и оценивания расстояния между этими системами на основе топологического анализа данных. Приведен пример формирования взвешенного ориентированного графа для динамической системы, соответствующей системе управления компонентами вектора угловой скорости летательного аппарата, который рассматривается как твердое тело с главными моментами инерции. Метод топологического анализа данных, используемый в настоящей работе для оценки расстояния между структурами динамических систем, основан на формировании персистентных баркодов и функций персистентного ландшафта. Методы сравнения динамических систем на основе топологического анализа данных могут быть использованы при классификации динамических систем и систем управления. Применение традиционной алгебраической топологии для анализа объектов не позволяет получить достаточное количество информации из-за уменьшения размерности данных (в связи потерей геометрической информации). Методы топологического анализа данных обеспечивают баланс между уменьшением размерности данных и характеристикой внутренней структуры объекта. В настоящей работе используются методы топологического анализа данных, основанные на применении фильтраций Vietoris-Rips и Dowker для присвоения каждому топологическому признаку геометрической размерности. Для отображения персистентных диаграмм метода топологического анализа данных в гильбертово пространство и последующей количественной оценки сравнения динамических систем используются функции персистентного ландшафта. На основе построения функций персистентного ландшафта предлагаются сравнение графов динамических систем и нахождение расстояний между динамическими системами. Для этой цели предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам. Приведены примеры нахождения расстояния между объектами (динамическими системами).
Ключевые слова: сложная динамическая система, персистентные гомологии, функции персистентного ландшафта.
Comparison of complex dynamical systems based on topological data analysis
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 513-525The paper considers the possibility of comparing and classifying dynamical systems based on topological data analysis. Determining the measures of interaction between the channels of dynamic systems based on the HIIA (Hankel Interaction Index Array) and PM (Participation Matrix) methods allows you to build HIIA and PM graphs and their adjacency matrices. For any linear dynamic system, an approximating directed graph can be constructed, the vertices of which correspond to the components of the state vector of the dynamic system, and the arcs correspond to the measures of mutual influence of the components of the state vector. Building a measure of distance (proximity) between graphs of different dynamic systems is important, for example, for identifying normal operation or failures of a dynamic system or a control system. To compare and classify dynamic systems, weighted directed graphs corresponding to dynamic systems are preliminarily formed with edge weights corresponding to the measures of interaction between the channels of the dynamic system. Based on the HIIA and PM methods, matrices of measures of interaction between the channels of dynamic systems are determined. The paper gives examples of the formation of weighted directed graphs for various dynamic systems and estimation of the distance between these systems based on topological data analysis. An example of the formation of a weighted directed graph for a dynamic system corresponding to the control system for the components of the angular velocity vector of an aircraft, which is considered as a rigid body with principal moments of inertia, is given. The method of topological data analysis used in this work to estimate the distance between the structures of dynamic systems is based on the formation of persistent barcodes and persistent landscape functions. Methods for comparing dynamic systems based on topological data analysis can be used in the classification of dynamic systems and control systems. The use of traditional algebraic topology for the analysis of objects does not allow obtaining a sufficient amount of information due to a decrease in the data dimension (due to the loss of geometric information). Methods of topological data analysis provide a balance between reducing the data dimension and characterizing the internal structure of an object. In this paper, topological data analysis methods are used, based on the use of Vietoris-Rips and Dowker filtering to assign a geometric dimension to each topological feature. Persistent landscape functions are used to map the persistent diagrams of the method of topological data analysis into the Hilbert space and then quantify the comparison of dynamic systems. Based on the construction of persistent landscape functions, we propose a comparison of graphs of dynamical systems and finding distances between dynamical systems. For this purpose, weighted directed graphs corresponding to dynamical systems are preliminarily formed. Examples of finding the distance between objects (dynamic systems) are given.
-
Разработка алгоритма анизотропной нелинейной фильтрации данных компьютерной томографии с применением динамического порога
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 233-248В статье рассматривается разработка алгоритма шумоподавления на основе анизотропной нелинейной фильтрации данных. Анализ отечественной и зарубежной литературы показал, что наиболее эффективные алгоритмы шумоподавления данных рентгеновской компьютерной томографии применяют комплекс нелинейных методик анализа и обработки данных, таких как билатеральная, адаптивная, трехмерная фильтрации. Однако комбинация таких методик редко применяется на практике ввиду большого времени обработки данных. В связи с этим было принято решение разработать эффективный и быстродейственный алгоритм шумоподавления на основе упрощенных билатеральных фильтров с трехмерным накоплением данных. Алгоритм был разработан на языке C++11 в программной среде Microsoft Visual Studio 2015. Основным отличием разработанного алгоритма шумоподавления является применение в нем улучшенной математической модели шума на основе распределения Пуассона и Гаусса от логарифмической величины, разработанной ранее. Это позволило точнее определить уровень шума и тем самым порог обработки данных. В результате работы алгоритма шумоподавления были получены обработанные данные компьютерной томографии с пониженным уровнем шума. При визуальной оценке работы алгоритма были отмечены повышенная информативность обработанных данных по сравнению с оригиналом, четкость отображения гомогенных областей и значительное сокращение шума в областях обработки. При оценке численных результатов обработки было выявлено снижение уровня среднеквадратичного отклонения более чем в 6 раз в областях, подвергшихся шумоподавлению, а высокие показатели коэффициента детерминации показали, что данные не подверглись искажению и изменились только из-за удаления шумов. Применение разработанного универсального динамического порога, принцип работы которого основан на пороговых критериях, позволил снизить уровень шума во всем массиве данных более чем в 6 раз. Динамический порог хорошо вписывается как в разработанный алгоритм шумоподавления на основе анизотропной нелинейной фильтрации, так и другой алгоритм шумоподавления. Алгоритм успешно функционирует в составе рабочей станции MultiVox, получил высокую оценку своей работы от специалистов-рентгенологов, а также готовится к внедрению в единую радиологическую сеть города Москвы в качестве модуля.
Ключевые слова: компьютерная томография (КТ), низкодозовая компьютерная томография (НДКТ), доза облучения, шумоподавление, анизотропия, динамическая фильтрация.
Development of anisotropic nonlinear noise-reduction algorithm for computed tomography data with context dynamic threshold
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 233-248Views (last year): 21.The article deals with the development of the noise-reduction algorithm based on anisotropic nonlinear data filtering of computed tomography (CT). Analysis of domestic and foreign literature has shown that the most effective algorithms for noise reduction of CT data use complex methods for analyzing and processing data, such as bilateral, adaptive, three-dimensional and other types of filtrations. However, a combination of such techniques is rarely used in practice due to long processing time per slice. In this regard, it was decided to develop an efficient and fast algorithm for noise-reduction based on simplified bilateral filtration method with three-dimensional data accumulation. The algorithm was developed on C ++11 programming language in Microsoft Visual Studio 2015. The main difference of the developed noise reduction algorithm is the use an improved mathematical model of CT noise, based on the distribution of Poisson and Gauss from the logarithmic value, developed earlier by our team. This allows a more accurate determination of the noise level and, thus, the threshold of data processing. As the result of the noise reduction algorithm, processed CT data with lower noise level were obtained. Visual evaluation of the data showed the increased information content of the processed data, compared to original data, the clarity of the mapping of homogeneous regions, and a significant reduction in noise in processing areas. Assessing the numerical results of the algorithm showed a decrease in the standard deviation (SD) level by more than 6 times in the processed areas, and high rates of the determination coefficient showed that the data were not distorted and changed only due to the removal of noise. Usage of newly developed context dynamic threshold made it possible to decrease SD level on every area of data. The main difference of the developed threshold is its simplicity and speed, achieved by preliminary estimation of the data array and derivation of the threshold values that are put in correspondence with each pixel of the CT. The principle of its work is based on threshold criteria, which fits well both into the developed noise reduction algorithm based on anisotropic nonlinear filtration, and another algorithm of noise-reduction. The algorithm successfully functions as part of the MultiVox workstation and is being prepared for implementation in a single radiological network of the city of Moscow.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"