All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Условия применимости статистической модели Райса и расчет параметров райсовского сигнала методом максимума правдоподобия
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 13-25В работе развивается теория нового, так называемого двухпараметрического подхода к анализу и обработке случайных сигналов. Проведены математическое моделирование и сопоставление результатов решения задачи в условиях статистических моделей Гаусса и Райса. Дается обоснование применимости статистической модели Райса в условиях анализа огибающей измеряемого сигнала в задачах обработки данных и изображений. Развит и теоретически обоснован метод решения задачи шумоподавления и восстановления райсовского сигнала посредством одновременного вычисления двух статистических параметров — величины математического ожидания исходного сигнала и дисперсии шума — на основе принципа максимума правдоподобия. Проанализированы особенности функции правдоподобия для распределения Райса и вытекающие из них возможности оценки параметров сигнала и шума.
Ключевые слова: случайный сигнал, распределение Райса, распределение Гаусса, метод максимума правдоподобия, отношение сигнала к шуму.
Conditions of Rice statistical model applicability and estimation of the Rician signal’s parameters by maximum likelihood technique
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 13-25Views (last year): 2. Citations: 4 (RSCI).The paper develops a theory of a new so-called two-parametric approach to the random signals' analysis and processing. A mathematical simulation and the task solutions’ comparison have been implemented for the Gauss and Rice statistical models. The applicability of the Rice statistical model is substantiated for the tasks of data and images processing when the signal’s envelope is being analyzed. A technique is developed and theoretically substantiated for solving the task of the noise suppression and initial image reconstruction by means of joint calculation of both statistical parameters — an initial signal’s mean value and noise dispersion — based on the maximum likelihood method within the Rice distribution. The peculiarities of this distribution’s likelihood function and the following from them possibilities of the signal and noise estimation have been analyzed.
-
Обзор методов обработки магнитно-резонансных изображений и развитие нового двухпараметрического метода моментов
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 231-244В работе дается обзор существующих методов обработки сигналов в условиях применения статистической модели Райса. Рассмотрены основные направления развития, существующие ограничения и возможности совершенствования методов решения задачи шумоподавления и фильтрации анализируемых сигналов на примере магнитно-резонансной визуализации. Развита концепция нового подхода к решению задачи одновременного определения основных статистических параметров райсовского случайного сигнала на основе метода моментов в двух вариантах его осуществления. Проведено компьютерное моделирование и проведен сравнительный анализ полученных численных результатов.
Ключевые слова: распределение Райса, магнитно-резонансная визуализация, выборки измерений, математическое ожидание, дисперсия шума.
Review of MRI processing techniques and elaboration of a new two-parametric method of moments
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 231-244Citations: 10 (RSCI).The paper provides a review of the existing methods of signals’ processing within the conditions of the Rice statistical model applicability. There are considered the principle development directions, the existing limitations and the improvement possibilities concerning the methods of solving the tasks of noise suppression and analyzed signals’ filtration by the example of magnetic-resonance visualization. A conception of a new approach to joint calculation of Rician signal’s both parameters has been developed based on the method of moments in two variants of its implementation. The computer simulation and the comparative analysis of the obtained numerical results have been conducted.
-
Разработка алгоритма анизотропной нелинейной фильтрации данных компьютерной томографии с применением динамического порога
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 233-248В статье рассматривается разработка алгоритма шумоподавления на основе анизотропной нелинейной фильтрации данных. Анализ отечественной и зарубежной литературы показал, что наиболее эффективные алгоритмы шумоподавления данных рентгеновской компьютерной томографии применяют комплекс нелинейных методик анализа и обработки данных, таких как билатеральная, адаптивная, трехмерная фильтрации. Однако комбинация таких методик редко применяется на практике ввиду большого времени обработки данных. В связи с этим было принято решение разработать эффективный и быстродейственный алгоритм шумоподавления на основе упрощенных билатеральных фильтров с трехмерным накоплением данных. Алгоритм был разработан на языке C++11 в программной среде Microsoft Visual Studio 2015. Основным отличием разработанного алгоритма шумоподавления является применение в нем улучшенной математической модели шума на основе распределения Пуассона и Гаусса от логарифмической величины, разработанной ранее. Это позволило точнее определить уровень шума и тем самым порог обработки данных. В результате работы алгоритма шумоподавления были получены обработанные данные компьютерной томографии с пониженным уровнем шума. При визуальной оценке работы алгоритма были отмечены повышенная информативность обработанных данных по сравнению с оригиналом, четкость отображения гомогенных областей и значительное сокращение шума в областях обработки. При оценке численных результатов обработки было выявлено снижение уровня среднеквадратичного отклонения более чем в 6 раз в областях, подвергшихся шумоподавлению, а высокие показатели коэффициента детерминации показали, что данные не подверглись искажению и изменились только из-за удаления шумов. Применение разработанного универсального динамического порога, принцип работы которого основан на пороговых критериях, позволил снизить уровень шума во всем массиве данных более чем в 6 раз. Динамический порог хорошо вписывается как в разработанный алгоритм шумоподавления на основе анизотропной нелинейной фильтрации, так и другой алгоритм шумоподавления. Алгоритм успешно функционирует в составе рабочей станции MultiVox, получил высокую оценку своей работы от специалистов-рентгенологов, а также готовится к внедрению в единую радиологическую сеть города Москвы в качестве модуля.
Ключевые слова: компьютерная томография (КТ), низкодозовая компьютерная томография (НДКТ), доза облучения, шумоподавление, анизотропия, динамическая фильтрация.
Development of anisotropic nonlinear noise-reduction algorithm for computed tomography data with context dynamic threshold
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 233-248Views (last year): 21.The article deals with the development of the noise-reduction algorithm based on anisotropic nonlinear data filtering of computed tomography (CT). Analysis of domestic and foreign literature has shown that the most effective algorithms for noise reduction of CT data use complex methods for analyzing and processing data, such as bilateral, adaptive, three-dimensional and other types of filtrations. However, a combination of such techniques is rarely used in practice due to long processing time per slice. In this regard, it was decided to develop an efficient and fast algorithm for noise-reduction based on simplified bilateral filtration method with three-dimensional data accumulation. The algorithm was developed on C ++11 programming language in Microsoft Visual Studio 2015. The main difference of the developed noise reduction algorithm is the use an improved mathematical model of CT noise, based on the distribution of Poisson and Gauss from the logarithmic value, developed earlier by our team. This allows a more accurate determination of the noise level and, thus, the threshold of data processing. As the result of the noise reduction algorithm, processed CT data with lower noise level were obtained. Visual evaluation of the data showed the increased information content of the processed data, compared to original data, the clarity of the mapping of homogeneous regions, and a significant reduction in noise in processing areas. Assessing the numerical results of the algorithm showed a decrease in the standard deviation (SD) level by more than 6 times in the processed areas, and high rates of the determination coefficient showed that the data were not distorted and changed only due to the removal of noise. Usage of newly developed context dynamic threshold made it possible to decrease SD level on every area of data. The main difference of the developed threshold is its simplicity and speed, achieved by preliminary estimation of the data array and derivation of the threshold values that are put in correspondence with each pixel of the CT. The principle of its work is based on threshold criteria, which fits well both into the developed noise reduction algorithm based on anisotropic nonlinear filtration, and another algorithm of noise-reduction. The algorithm successfully functions as part of the MultiVox workstation and is being prepared for implementation in a single radiological network of the city of Moscow.
-
Определение дозы излучения компьютерной томографии по анализу уровня шума
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 525-533В статье рассматривается процесс создания эффективного алгоритма для определения количества излученных квантов с рентгеновской трубки в исследованиях компьютерной томографии. Анализ отечественной и зарубежной литературы показал, что большинство работ в области радиометрии и радиографии принимают во внимание табличные значения показателей поглощения рентгеновского излучения, а индивидуальные показатели дозы не учитывают вовсе, т. к. во многих исследованиях отсутствует радиометрический отчет (Dose Report) и для облегчения расчетов статистики применяется средний показатель. В связи с этим было принято решение разработать средства выявления данных об ионизирующей нагрузке путем анализа шума компьютерной томографии (КТ). В качестве основы алгоритма принята математическая модель распределения шума собственной разработки на основе распределения Пуассона и Гаусса от логарифмической величины. Результирующая математическая модель проверялась на данных КТ калибровочного фантома, состоящего из трех пластиковых цилиндров, заполненных водой, коэффициент поглощения рентгеновского излучения которых известен из табличных значений. Данные были получены с нескольких КТ приборов различных производителей (Siemens, Toshiba, GE, Phillips). Разработанный алгоритм позволил рассчитать количество излученных квантов рентгеновского излучения за единицу времени. Эти данные, с учетом уровня шума и радиусов цилиндров, были преобразованы в величины поглощения рентгеновского излучения, после чего проводилось сравнение с табличными значениями. В результате работы алгоритма с данными КТ различных конфигураций были получены экспериментальные данные, согласующиеся с теоретической частью и математической моделью. Результаты показали хорошую точность алгоритма и математического аппарата, что может говорить о достоверности полученных данных. Данная математическая модель уже применяется в программе шумоподавления КТ собственной разработки, где она участвует в качестве средства создания динамического порога шумоподавления. В данный момент алгоритм проходит процедуру доработки для работы с реальными данными компьютерной томографии пациентов.
Ключевые слова: компьютерная томография, доза облучения, уровень шума, коэффициент погло- щения рентгеновского излучения.
Determination of CT dose by means of noise analysis
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 525-533Views (last year): 23. Citations: 1 (RSCI).The article deals with the process of creating an effective algorithm for determining the amount of emitted quanta from an X-ray tube in computer tomography (CT) studies. An analysis of domestic and foreign literature showed that most of the work in the field of radiometry and radiography takes the tabulated values of X-ray absorption coefficients into account, while individual dose factors are not taken into account at all since many studies are lacking the Dose Report. Instead, an average value is used to simplify the calculation of statistics. In this regard, it was decided to develop a method to detect the amount of ionizing quanta by analyzing the noise of CT data. As the basis of the algorithm, we used Poisson and Gauss distribution mathematical model of owns’ design of logarithmic value. The resulting mathematical model was tested on the CT data of a calibration phantom consisting of three plastic cylinders filled with water, the X-ray absorption coefficient of which is known from the table values. The data were obtained from several CT devices from different manufacturers (Siemens, Toshiba, GE, Phillips). The developed algorithm made it possible to calculate the number of emitted X-ray quanta per unit time. These data, taking into account the noise level and the radiuses of the cylinders, were converted to X-ray absorption values, after which a comparison was made with tabulated values. As a result of this operation, the algorithm used with CT data of various configurations, experimental data were obtained, consistent with the theoretical part and the mathematical model. The results showed good accuracy of the algorithm and mathematical apparatus, which shows reliability of the obtained data. This mathematical model is already used in the noise reduction program of the CT of own design, where it participates as a method of creating a dynamic threshold of noise reduction. At the moment, the algorithm is being processed to work with real data from computer tomography of patients.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"