All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Аддитивная регуляризация тематических моделей с быстрой векторизацией текста
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1515-1528Задача вероятностного тематического моделирования заключается в том, чтобы по заданной коллекции текстовых документов найти две матрицы: матрицу условных вероятностей тем в документах и матрицу условных вероятностей слов в темах. Каждый документ представляется в виде мультимножества слов, то есть предполагается, что для выявления тематики документа не важен порядок слов в нем, а важна только их частота. При таком предположении задача сводится к вычислению низкорангового неотрицательного матричного разложения, наилучшего по критерию максимума правдоподобия. Данная задача имеет в общем случае бесконечное множество решений, то есть является некорректно поставленной. Для регуляризации ее решения к логарифму правдоподобия добавляется взвешенная сумма оптимизационных критериев, с помощью которых формализуются дополнительные требования к модели. При моделировании больших текстовых коллекций хранение первой матрицы представляется нецелесообразным, поскольку ее размер пропорционален числу документов в коллекции. В то же время тематические векторные представления документов необходимы для решения многих задач текстовой аналитики — информационного поиска, кластеризации, классификации, суммаризации текстов. На практике тематический вектор вычисляется для каждого документа по необходимости, что может потребовать десятков итераций по всем словам документа. В данной работе предлагается способ быстрого вычисления тематического вектора для произвольного текста, требующий лишь одной итерации, то есть однократного прохода по всем словам документа. Для этого в модель вводится дополнительное ограничение в виде уравнения, позволяющего вычислять первую матрицу через вторую за линейное время. Хотя формально данное ограничение не является оптимизационным критерием, фактически оно выполняет роль регуляризатора и может применяться в сочетании с другими критериями в рамках теории аддитивной регуляризации тематических моделей ARTM. Эксперименты на трех свободно доступных текстовых коллекциях показали, что предложенный метод улучшает качество модели по пяти оценкам качества, характеризующим разреженность, различность, информативность и когерентность тем. Для проведения экспериментов использовались библиотеки с открытымк одомB igARTM и TopicNet.
Ключевые слова: автоматическая обработка текстов, обучение без учителя, тематическое моделирование, аддитивная регуляризация тематических моделей, EM-алгоритм, PLSA, LDA, ARTM, BigARTM, TopicNet.
Additive regularizarion of topic models with fast text vectorizartion
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1515-1528The probabilistic topic model of a text document collection finds two matrices: a matrix of conditional probabilities of topics in documents and a matrix of conditional probabilities of words in topics. Each document is represented by a multiset of words also called the “bag of words”, thus assuming that the order of words is not important for revealing the latent topics of the document. Under this assumption, the problem is reduced to a low-rank non-negative matrix factorization governed by likelihood maximization. In general, this problem is ill-posed having an infinite set of solutions. In order to regularize the solution, a weighted sum of optimization criteria is added to the log-likelihood. When modeling large text collections, storing the first matrix seems to be impractical, since its size is proportional to the number of documents in the collection. At the same time, the topical vector representation (embedding) of documents is necessary for solving many text analysis tasks, such as information retrieval, clustering, classification, and summarization of texts. In practice, the topical embedding is calculated for a document “on-the-fly”, which may require dozens of iterations over all the words of the document. In this paper, we propose a way to calculate a topical embedding quickly, by one pass over document words. For this, an additional constraint is introduced into the model in the form of an equation, which calculates the first matrix from the second one in linear time. Although formally this constraint is not an optimization criterion, in fact it plays the role of a regularizer and can be used in combination with other regularizers within the additive regularization framework ARTM. Experiments on three text collections have shown that the proposed method improves the model in terms of sparseness, difference, logLift and coherence measures of topic quality. The open source libraries BigARTM and TopicNet were used for the experiments.
-
Технология формирования каталога информационного фонда
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 661-673В статье рассматривается подход совершенствования технологий обработки информации на основе логико-семантической сети (ЛСС) «Вопрос–ответ–реакция», направленный на формирование и поддержку каталожной службы, обеспечивающей эффективный поиск ответов на вопросы [Большой энциклопедический словарь, 1998; Касавин, 2009]. В основу такой каталожной службы положены семантические связи, отражающие логику изложения авторской мысли в рамках данной публикации, темы, предметной области. Структурирование и поддержка этих связей позволят работать с полем смыслов, обеспечив новые возможности для исследования корпуса документов электронных библиотек (ЭБ) [Касавин, 2009]. Формирование каталога информационного фонда (ИФ) включает: формирование лексического словаря ИФ; построение дерева классификации ИФ по нескольким основаниям; классификация ИФ по вопросно-ответным темам; формирование поисковых запросов, адекватных дереву классификации вопросно-ответных тем (таблица соответствия «запрос → ответ ↔ {вопрос–ответ–реакция}»); автоматизированный поиск запросов по тематическим поисковым машинам; анализ ответов на запросы; поддержка каталога ЛСС на этапе эксплуатации (пополнение и уточнение каталога). Технология рассматривается для двух ситуаций: 1) ИФ уже сформирован; 2) ИФ отсутствует, его необходимо создать.
Ключевые слова: информационный фонд, Большие Данные, информационный поиск, пертинентность, навигация, информационно-поисковая система, семантические связи, логико-семантическая сеть «вопрос–ответ–реакция».
Cataloging technology of information fund
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 661-673Views (last year): 3.The article discusses the approach to the improvement of information processing technology on the basis of logical-semantic network (LSN) Question–Answer–Reaction aimed at formation and support of the catalog service providing efficient search of answers to questions.
The basis of such a catalog service are semantic links, reflecting the logic of presentation of the author's thoughts within the framework this publication, theme, subject area. Structuring and support of these links will allow working with a field of meanings, providing new opportunities for the study the corps of digital libraries documents. Cataloging of the information fund includes: formation of lexical dictionary; formation of the classification tree for several bases; information fund classification for question–answer topics; formation of the search queries that are adequate classification trees the question–answer; automated search queries on thematic search engines; analysis of the responses to queries; LSN catalog support during the operational phase (updating and refinement of the catalog). The technology is considered for two situations: 1) information fund has already been formed; 2) information fund is missing, you must create it.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"