All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
О качестве работы алгоритмов слежения за объектами на видео
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 303-313Движение объекта на видео классифицируется на регулярное (движение объекта по непрерывной траектории) и нерегулярное (разрывы траекторий вследствие заслонения объекта слежения другими объектами, скачка объекта и др.). В случае регулярного движения объекта трекер рассматривается как динамическая система, что позволяет использовать условия существования, единственности и устойчивости решения такой системы как критерий корректной работы трекера. Предложен количественный критерий оценки корректной работы алгоритма слежения mean-shift, основанный на применении условия Липшица и других параметров трекера. Полученный результат обобщается на случай произвольного алгоритма слежения.
On quality of object tracking algorithms
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 303-313Views (last year): 20. Citations: 9 (RSCI).Object movement on a video is classified on the regular (object movement on continuous trajectory) and non-regular (trajectory breaks due to object occlusions by other objects, object jumps and others). In the case of regular object movement a tracker is considered as a dynamical system that enables to use conditions of existence, uniqueness, and stability of the dynamical system solution. This condition is used as the correctness criterion of the tracking process. Also, quantitative criterion for correct mean-shift tracking assessment based on the Lipchitz condition is suggested. Results are generalized for arbitrary tracker.
-
Двухпроходная модель Feature-Fused SSD для детекции разномасштабных изображений рабочих на строительной площадке
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 57-73При распознавании рабочих на изображениях строительной площадки, получаемых с камер наблюдения, типичной является ситуация, при которой объекты детекции имеют сильно различающийся пространственный масштаб относительно друг друга и других объектов. Повышение точности детекции мелких объектов может быть обеспечено путем использования Feature-Fused модификации детектора SSD (Single Shot Detector). Вместе с применением на инференсе нарезки изображения с перекрытием такая модель хорошо справляется с детекцией мелких объектов. Однако при практическом использовании данного подхода требуется ручная настройка параметров нарезки. При этом снижается точность детекции объектов на сценах, отличающихся от сцен, использованных при обучении, а также крупных объектов. В данной работе предложен алгоритм автоматического выбора оптимальных параметров нарезки изображения в зависимости от соотношений характерных геометрических размеров объектов на изображении. Нами разработан двухпроходной вариант детектора Feature-Fused SSD для автоматического определения параметров нарезки изображения. На первом проходе применяется усеченная версия детектора, позволяющая определять характерные размеры объектов интереса. На втором проходе осуществляется финальная детекция объектов с параметрами нарезки, выбранными после первого прохода. Был собран датасет с изображениями рабочих на строительной площадке. Датасет включает крупные, мелкие и разноплановые изображения рабочих. Для сравнения результатов детекции для однопроходного алгоритма без разбиения входного изображения, однопроходного алгоритма с равномерным разбиением и двухпроходного алгоритма с подбором оптимального разбиения рассматривались тесты по детекции отдельно крупных объектов, очень мелких объектов, с высокой плотностью объектов как на переднем, так и на заднем плане, только на заднем плане. В диапазоне рассмотренных нами случаев наш подход превосходит подходы, взятые в сравнение, позволяет хорошо бороться с проблемой двойных детекций и демонстрирует качество 0,82–0,91 по метрике mAP (mean Average Precision).
Dual-pass Feature-Fused SSD model for detecting multi-scale images of workers on the construction site
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 57-73When recognizing workers on images of a construction site obtained from surveillance cameras, a situation is typical in which the objects of detection have a very different spatial scale relative to each other and other objects. An increase in the accuracy of detection of small objects can be achieved by using the Feature-Fused modification of the SSD detector. Together with the use of overlapping image slicing on the inference, this model copes well with the detection of small objects. However, the practical use of this approach requires manual adjustment of the slicing parameters. This reduces the accuracy of object detection on scenes that differ from the scenes used in training, as well as large objects. In this paper, we propose an algorithm for automatic selection of image slicing parameters depending on the ratio of the characteristic geometric dimensions of objects in the image. We have developed a two-pass version of the Feature-Fused SSD detector for automatic determination of optimal image slicing parameters. On the first pass, a fast truncated version of the detector is used, which makes it possible to determine the characteristic sizes of objects of interest. On the second pass, the final detection of objects with slicing parameters selected after the first pass is performed. A dataset was collected with images of workers on a construction site. The dataset includes large, small and diverse images of workers. To compare the detection results for a one-pass algorithm without splitting the input image, a one-pass algorithm with uniform splitting, and a two-pass algorithm with the selection of the optimal splitting, we considered tests for the detection of separately large objects, very small objects, with a high density of objects both in the foreground and in the background, only in the background. In the range of cases we have considered, our approach is superior to the approaches taken in comparison, allows us to deal well with the problem of double detections and demonstrates a quality of 0.82–0.91 according to the mAP (mean Average Precision) metric.
-
Оценка масштабируемости программы расчета движения примесей в атмосфере средствами симулятора gem5
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 773-794В данной работе мы предлагаем новую эффективную программную реализацию алгоритма расчета трансконтинентального переноса примеси в атмосфере от естественного или антропогенного источника на адаптивной конечно-разностной сетке, концентрирующей свои узлы внутри переносимого облака примеси, где наблюдаются резкие изменения значений ее массовой доли, и максимально разрежающей узлы во всех остальных частях атмосферы, что позволяет минимизировать общее количество узлов. Особенностью реализации является представление адаптивной сетки в виде комбинации динамических (дерево, связный список) и статических (массив) структур данных. Такое представление сетки позволяет увеличить скорость выполнения расчетов в два раза по сравнению со стандартным подходом представления адаптивной сетки только через динамические структуры данных.
Программа создавалась на компьютере с шестиядерным процессором. С помощью симулятора gem5, позволяющего моделировать работу различных компьютерных систем, была произведена оценка масштабируемости программы при переходе на большее число ядер (вплоть до 32) на нескольких моделях компьютерной системы вида «вычислительные ядра – кэш-память – оперативная память» с разной степенью детализации ее элементов. Отмечено существенное влияние состава компьютерной системы на степень масштабируемости исполняемой на ней программы: максимальное ускорение на 32-х ядрах при переходе от двухуровневого кэша к трехуровневому увеличивается с 14.2 до 22.2. Время выполнения программы на модели компьютера в gem5 превосходит время ее выполнения на реальном компьютере в 104–105 раз в зависимости от состава модели и составляет 1.5 часа для наиболее детализированной и сложной модели.
Также в статье рассматриваются подробный порядок настройки симулятора gem5 и наиболее оптимальный с точки зрения временных затрат способ проведения симуляций, когда выполнение не представляющих интерес участков кода переносится на физический процессор компьютера, где работает gem5, а непосредственно внутри симулятора выполняется лишь исследуемый целевой кусок кода.
Evaluation of the scalability property of the program for the simulation of atmospheric chemical transport by means of the simulator gem5
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 773-794In this work we have developed a new efficient program for the numerical simulation of 3D global chemical transport on an adaptive finite-difference grid which allows us to concentrate grid points in the regions where flow variables sharply change and coarsen the grid in the regions of their smooth behavior, which significantly minimizes the grid size. We represent the adaptive grid with a combination of several dynamic (tree, linked list) and static (array) data structures. The dynamic data structures are used for a grid reconstruction, and the calculations of the flow variables are based on the static data structures. The introduction of the static data structures allows us to speed up the program by a factor of 2 in comparison with the conventional approach to the grid representation with only dynamic data structures.
We wrote and tested our program on a computer with 6 CPU cores. Using the computer microarchitecture simulator gem5, we estimated the scalability property of the program on a significantly greater number of cores (up to 32), using several models of a computer system with the design “computational cores – cache – main memory”. It has been shown that the microarchitecture of a computer system has a significant impact on the scalability property, i.e. the same program demonstrates different efficiency on different computer microarchitectures. For example, we have a speedup of 14.2 on a processor with 32 cores and 2 cache levels, but we have a speedup of 22.2 on a processor with 32 cores and 3 cache levels. The execution time of a program on a computer model in gem5 is 104–105 times greater than the execution time of the same program on a real computer and equals 1.5 hours for the most complex model.
Also in this work we describe how to configure gem5 and how to perform simulations with gem5 in the most optimal way.
-
Надежность автоматизированных систем управления (АСУ) и безопасность автономных автомобилей основываются на предположении, что если система компьютерного зрения, установленная на автомобиле, способна идентифицировать объекты в поле видимости и АСУ способна достоверно оценить намерение и предсказать поведение каждого из этих объектов, то автомобиль может спокойно управляться без водителя. Однако как быть с объектами, которые не видны?
В данной статье мы рассматриваем задачу из двух частей: (1) статической (о потенциальных слепых зонах) и (2) динамической реального времени (об идентификации объектов в слепых зонах и информировании участников дорожного движения о таких объектах). Эта задача рассматривается в контексте городских перекрестков.
Ключевые слова: автономные автомобили, подключенные автомобили, подключенные перекрестки, слепые зоны, I2V, DSRC.Views (last year): 29.Intersections present a very demanding environment for all the parties involved. Challenges arise from complex vehicle trajectories; occasional absence of lane markings to guide vehicles; split phases that prevent determining who has the right of way; invisible vehicle approaches; illegal movements; simultaneous interactions among pedestrians, bicycles and vehicles. Unsurprisingly, most demonstrations of AVs are on freeways; but the full potential of automated vehicles — personalized transit, driverless taxis, delivery vehicles — can only be realized when AVs can sense the intersection environment to efficiently and safely maneuver through intersections.
AVs are equipped with an array of on-board sensors to interpret and suitably engage with their surroundings. Advanced algorithms utilize data streams from such sensors to support the movement of autonomous vehicles through a wide range of traffic and climatic conditions. However, there exist situations, in which additional information about the upcoming traffic environment would be beneficial to better inform the vehicles’ in-built tracking and navigation algorithms. A potential source for such information is from in-pavement sensors at an intersection that can be used to differentiate between motorized and non-motorized modes and track road user movements and interactions. This type of information, in addition to signal phasing, can be provided to the AV as it approaches an intersection, and incorporated into an improved prior for the probabilistic algorithms used to classify and track movement in the AV’s field of vision.
This paper is concerned with the situation in which there are objects that are not visible to the AV. The driving context is that of an intersection, and the lack of visibility is due to other vehicles that obstruct the AV’s view, leading to the creation of blind zones. Such obstruction is commonplace in intersections.
Our objective is:
1) inform a vehicle crossing the intersection about its potential blind zones;
2) inform the vehicle about the presence of agents (other vehicles, bicyclists or pedestrians) in those blind zones.
-
Подходы к обработке изображений в системе поддержки принятия решений центра автоматизированной фиксации административных правонарушений дорожного движения
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 405-415В статье предлагается ряд подходов к обработке изображений в системе поддержки принятия решений (СППР) центра автоматизированной фиксации административных правонарушений дорожного движения (ЦАФАП). Основной задачей данной СППР является помощь человеку-оператору в получении точной информации о государственном регистрационном знаке (ГРЗ) и модели транспортного средства (ТС) на основании изображений, полученных с комплексов фотовидеофиксации (ФВФ). В статье предложены подходы к распознаванию ГРЗ и марки/модели ТС на изображении, основанные на современных нейросетевых моделях. Для распознавания ГРЗ использована нейросетевая модель LPRNet с дополнительно введенным Spatial Transformer Layer для предобработки изображения. Для автоматического определения марки/модели ТС на изображении использована нейросетевая архитектура ResNeXt-101-32x8d. Предложен подход к формированию обучающей выборки для нейросетевой модели распознавания ГРЗ, основанный на методах компьютерного зрения и алгоритмах машинного обучения. В данном подходе использован алгоритм SIFT для нахождения ключевых точек изображения с ГРЗ и вычисления их дескрипторов, а для удаления точек-выбросов использован алгоритм DBSCAN. Точность распознавания ГРЗ на тестовой выборке составила 96 %. Предложен подход к повышению производительности процедур дообучения и распознавания марки/модели ТС, основанный на использовании новой архитектуры сверточной нейронной сети с «заморозкой» весовых коэффициентов сверточных слоев, дополнительным сверточным слоем распараллеливания процесса классификации и множеством бинарных классификаторов на выходе. Применение новой архитектуры позволило на несколько порядков уменьшить время дообучения нейросетевой модели распознавания марки/модели ТС с итоговой точностью классификации, близкой к 99 %. Предложенные подходы были апробированы и внедрены в СППР ЦАФАП Республики Татарстан.
Ключевые слова: система поддержки принятия решений, изображение, компьютерное зрение, нейронные сети.
Approaches for image processing in the decision support system of the center for automated recording of administrative offenses of the road traffic
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 405-415We suggested some approaches for solving image processing tasks in the decision support system (DSS) of the Center for Automated Recording of Administrative Offenses of the Road Traffic (CARAO). The main task of this system is to assist the operator in obtaining accurate information about the vehicle registration plate and the vehicle brand/model based on images obtained from the photo and video recording systems. We suggested the approach for vehicle registration plate recognition and brand/model classification on the images based on modern neural network models. LPRNet neural network model supplemented by Spatial Transformer Layer was used to recognize the vehicle registration plate. The ResNeXt-101-32x8d neural network model was used to classify for vehicle brand/model. We suggested the approach to construct the training set for the neural network of vehicle registration plate recognition. The approach is based on computer vision methods and machine learning algorithms. The SIFT algorithm was used to detect and describe local features on images with the vehicle registration plate. DBSCAN clustering was used to detect and delete outliers in such local features. The accuracy of vehicle registration plate recognition was 96% on the testing set. We suggested the approach to improve the efficiency of using the ResNeXt-101-32x8d model at additional training and classification stages. The approach is based on the new architecture of convolutional neural networks with “freezing” weight coefficients of convolutional layers, an additional convolutional layer for parallelizing the classification process, and a set of binary classifiers at the output. This approach significantly reduced the time of additional training of neural network when new vehicle brand/model classification was needed. The final accuracy of vehicle brand/model classification was 99% on the testing set. The proposed approaches were tested and implemented in the DSS of the CARAO of the Republic of Tatarstan.
-
Анализ изображений в системах управления беспилотными автомобилями на основе модели энергетических признаков
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 369-376В статье показана актуальность научно-исследовательских работ в области создания систем управления беспилотными автомобилями на основе технологий компьютерного зрения. Средства компьютерного зрения используются для решения большого количества различных задач, в том числе для определения местоположения автомобиля, обнаружения препятствий, определения пригодного для парковки места. Данные задачи являются ресурсоемкими и должны выполняться в реальном режиме времени. Поэтому актуальна разработка эффективных моделей, методов и средств, обеспечивающих достижение требуемых показателей времени и точности для применения в системах управления беспилотными автомобилями. При этом важное значение имеет выбор модели представления изображений. В данной работе рассмотрена модель на основе вейвлет-преобразования, позволяющая сформировать признаки, характеризующие оценки энергии точек изображения и отражающие их значимость с точки зрения вклада в общую энергию изображения. Для формирования модели энергетических признаков выполняется процедура, основанная на учете зависимостей между вейвлет-коэффициентами различных уровней и применении эвристических настроечных коэффициентов для усиления или ослабления влияния граничных и внутренних точек. На основе предложенной модели можно построить описания изображений для выделения и анализа их характерных особенностей, в том числе для выделения контуров, регионов и особых точек. Эффективность предлагаемого подхода к анализу изображений обусловлена тем, что рассматриваемые объекты, такие как дорожные знаки, дорожная разметка или номера автомобилей, которые необходимо обнаруживать и идентифицировать, характеризуются соответствующими признаками. Кроме того, использование вейвлет-преобразований позволяет производить одни и те же базовые операции для решения комплекса задач в бортовых системах беспилотных автомобилей, в том числе для задач первичной обработки, сегментации, описания, распознавания и сжатия изображений. Применение такого унифицированного подхода позволит сократить время на выполнение всех процедур и снизить требования к вычислительным ресурсам бортовой системы беспилотного автотранспортного средства.
Ключевые слова: беспилотный автомобиль, система управления, компьютерное зрение, обработка и анализ изображений, вейвлет-преобразование, модель энергетических признаков изображения.
The analysis of images in control systems of unmanned automobiles on the base of energy features model
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 369-376Views (last year): 31. Citations: 1 (RSCI).The article shows the relevance of research work in the field of creating control systems for unmanned vehicles based on computer vision technologies. Computer vision tools are used to solve a large number of different tasks, including to determine the location of the car, detect obstacles, determine a suitable parking space. These tasks are resource intensive and have to be performed in real time. Therefore, it is important to develop effective models, methods and tools that ensure the achievement of the required time and accuracy for use in unmanned vehicle control systems. In this case, the choice of the image representation model is important. In this paper, we consider a model based on the wavelet transform, which makes it possible to form features characterizing the energy estimates of the image points and reflecting their significance from the point of view of the contribution to the overall image energy. To form a model of energy characteristics, a procedure is performed based on taking into account the dependencies between the wavelet coefficients of various levels and the application of heuristic adjustment factors for strengthening or weakening the influence of boundary and interior points. On the basis of the proposed model, it is possible to construct descriptions of images their characteristic features for isolating and analyzing, including for isolating contours, regions, and singular points. The effectiveness of the proposed approach to image analysis is due to the fact that the objects in question, such as road signs, road markings or car numbers that need to be detected and identified, are characterized by the relevant features. In addition, the use of wavelet transforms allows to perform the same basic operations to solve a set of tasks in onboard unmanned vehicle systems, including for tasks of primary processing, segmentation, description, recognition and compression of images. The such unified approach application will allow to reduce the time for performing all procedures and to reduce the requirements for computing resources of the on-board system of an unmanned vehicle.
-
Технология сбора исходных данных для построения моделей оценки функционального состояния человека по зрачковой реакции на изменение освещенности в решении отдельных задач обеспечения транспортной безопасности
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 417-427В данной статье решается задача разработки технологии сбора исходных данных для построения моделей оценки функционального состояния человека. Данное состояние оценивается по зрачковой реакции человека на изменение освещенности на основе метода пупиллометрии. Данный метод предполагает сбор и анализ исходных данных (пупиллограмм), представленных в виде временных рядов, характеризующих динамику изменения зрачков человека на световое импульсное воздействие. Анализируются недостатки традиционного подхода к сбору исходных данных с применением методов компьютерного зрения и сглаживания временных рядов. Акцентируется внимание на важности качества исходных данных для построения адекватных математических моделей. Актуализируется необходимость ручной разметки окружностей радужной оболочки глаза и зрачка для повышения точности и качества исходных данных. Описываются этапы предложенной технологии сбора исходных данных. Приводится пример полученной пупиллограммы, имеющей гладкую форму и не содержащей выбросы, шумы, аномалии и пропущенные значения. На основе представленной технологии разработан программно-аппаратный комплекс, представляющий собой совокупность специального программного обеспечения, имеющего два основных модуля, и аппаратной части, реализованной на базе микрокомпьютера Raspberry Pi 4 Model B, с периферийным оборудованием, реализующим заданный функционал. Для оценки эффективности разработанной технологии используются модели однослойного персептрона и коллектива нейронных сетей, для построения которых использовались исходные данные о функциональном состоянии утомления человека. Проведенные исследования показали, что применение ручной разметки исходных данных (по сравнению с автоматическими методами компьютерного зрения) приводит к снижению числа ошибок 1-го и 2-года рода и, соответственно, повышению точности оценки функционального состояния человека. Таким образом, представленная технология сбора исходных данных может эффективно использоваться для построения адекватных моделей оценки функционального состояния человека по зрачковой реакции на изменение освещенности. Использование таких моделей актуально в решении отдельных задач обеспечения транспортной безопасности, в частности мониторинга функционального состояния водителей.
Ключевые слова: пупиллометрия, сбор исходных данных, компьютерное зрение, оценка функционального состояния человека, зрачковая реакция, мониторинг состояния усталости водителя.
Technology for collecting initial data for constructing models for assessing the functional state of a human by pupil's response to illumination changes in the solution of some problems of transport safety
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 417-427This article solves the problem of developing a technology for collecting initial data for building models for assessing the functional state of a person. This condition is assessed by the pupil response of a person to a change in illumination based on the pupillometry method. This method involves the collection and analysis of initial data (pupillograms), presented in the form of time series characterizing the dynamics of changes in the human pupils to a light impulse effect. The drawbacks of the traditional approach to the collection of initial data using the methods of computer vision and smoothing of time series are analyzed. Attention is focused on the importance of the quality of the initial data for the construction of adequate mathematical models. The need for manual marking of the iris and pupil circles is updated to improve the accuracy and quality of the initial data. The stages of the proposed technology for collecting initial data are described. An example of the obtained pupillogram is given, which has a smooth shape and does not contain outliers, noise, anomalies and missing values. Based on the presented technology, a software and hardware complex has been developed, which is a collection of special software with two main modules, and hardware implemented on the basis of a Raspberry Pi 4 Model B microcomputer, with peripheral equipment that implements the specified functionality. To evaluate the effectiveness of the developed technology, models of a single-layer perspetron and a collective of neural networks are used, for the construction of which the initial data on the functional state of intoxication of a person were used. The studies have shown that the use of manual marking of the initial data (in comparison with automatic methods of computer vision) leads to a decrease in the number of errors of the 1st and 2nd years of the kind and, accordingly, to an increase in the accuracy of assessing the functional state of a person. Thus, the presented technology for collecting initial data can be effectively used to build adequate models for assessing the functional state of a person by pupillary response to changes in illumination. The use of such models is relevant in solving individual problems of ensuring transport security, in particular, monitoring the functional state of drivers.
-
Нейросетевая модель распознавания знаков дорожного движения в интеллектуальных транспортных системах
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 429-435В данной статье проводится анализ проблемы распознавания знаков дорожного движения в интеллектуальных транспортных системах. Рассмотрены основные понятия компьютерного зрения и задачи распознавания образов. Самым эффективным и популярным подходом к решению задач анализа и распознавания изображений на данный момент является нейросетевой, а среди возможных нейронных сетей лучше всего показала себя искусственная нейронная сеть сверточной архитектуры. Для решения задачи классификации при распознавании дорожных знаков использованы такие функции активации, как Relu и SoftMax. В работе предложена технология распознавания дорожных знаков. Выбор подхода для решения поставленной задачи на основе сверточной нейронной сети обусловлен возможностью эффективно решать задачу выделения существенных признаков и классификации изображений. Проведена подготовка исходных данных для нейросетевой модели, сформирована обучающая выборка. В качестве платформы для разработки интеллектуальной нейросетевой модели распознавания использован облачный сервис Google Colaboratory с подключенными библиотеками для глубокого обучения TensorFlow и Keras. Разработана и протестирована интеллектуальная модель распознавания знаков дорожного движения. Использованная сверточная нейронная сеть включала четыре каскада свертки и подвыборки. После сверточной части идет полносвязная часть сети, которая отвечает за классификацию. Для этого используются два полносвязных слоя. Первый слой включает 512 нейронов с функцией активации Relu. Затем идет слой Dropout, который используется для уменьшения эффекта переобучения сети. Выходной полносвязный слой включает четыре нейрона, что соответствует решаемой задаче распознавания четырех видов знаков дорожного движения. Оценка эффективности нейросетевой модели распознавания дорожных знаков методом трехблочной кроссалидации показала, что ее ошибка минимальна, следовательно, в большинстве случаев новые образы будут распознаваться корректно. Кроме того, у модели отсутствуют ошибки первого рода, а ошибка второго рода имеет низкое значение и лишь при сильно зашумленном изображении на входе.
Ключевые слова: сверточная нейронная сеть, анализ данных, распознавание дорожных знаков, интеллектуальные транспортные системы.
A neural network model for traffic signs recognition in intelligent transport systems
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.
-
Методологический подход к моделированию и прогнозированию воздействия пространственной неоднородности процессов распространения COVID-19 на экономическое развитие регионов России
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 629-648Статья посвящена исследованию социально-экономических последствий от вирусных эпидемий в условиях неоднородности экономического развития территориальных систем. Актуальность исследования обусловлена необходимостью поиска оперативных механизмов государственного управления и стабилизации неблагоприятной эпидемио-логической ситуации с учетом пространственной неоднородности распространения COVID-19, сопровождающейся концентрацией инфекции в крупных мегаполисах и на территориях с высокой экономической активностью.
Целью работы является разработка комплексного подхода к исследованию пространственной неоднородности распространения коронавирусной инфекции с точки зрения экономических последствий пандемии в регионах России. В работе особое внимание уделяется моделированию последствий ухудшающейся эпидемиологической ситуации на динамике экономического развития региональных систем, определению полюсов роста распространения коронавирусной инфекции, пространственных кластеров и зон их влияния с оценкой межтерриториальных взаимосвязей. Особенностью разработанного подхода является пространственная кластеризация региональных систем по уровню заболеваемости COVID-19, проведенная с использованием глобального и локальных индексов пространственной автокорреляции, различных матриц пространственных весов и матрицы взаимовлияния Л.Анселина на основе статистической информации Росстата. В результате проведенного исследования были выявлены пространственный кластер, отличающийся высоким уровнем инфицирования COVID-19 с сильной зоной влияния и устойчивыми межрегиональными взаимосвязями с окружающими регионами, а также сформировавшиеся полюса роста, которые являются потенциальными полюсами дальнейшего распространения коронавирусной инфекции. Проведенный в работе регрессионный анализ с использованием панельных данных позволил сформировать модель для сценарного прогнозирования последствий от распространения коронавирусной инфекции и принятия управленческих решений органами государственной власти.
В работе выявлено, что увеличение числа заболевших коронавирусной инфекцией влияет на сокращение среднесписочной численности работников, снижение средней начисленной заработной платы. Предложенный подход к моделированию последствий COVID-19 может быть расширен за счет использования полученных результатов исследования при проектировании агент-ориентированной моделей, которые позволят оценить средне- и долгосрочные социально-экономические последствия пандемии с точки зрения особенностей поведения различных групп населения. Проведение компьютерных экспериментов позволит воспроизвести социально-демографическая структуру населения и оценить различные ограничительные меры в регионах России и сформировать пространственные приоритеты поддержки населения и бизнеса в условиях пандемии. На основе предлагаемого методологического подхода может быть разработана агент-ориентированная модель в виде программного комплекса, предназначенного для системы поддержки принятия решений оперативным штабам, центрам мониторинга эпидемиологической ситуации, органам государственного управления на федеральном и региональном уровнях.
Ключевые слова: пространственная неоднородность, пространственная автокорреляция, кластеризация, локальный индекс Морана, межрегиональные взаимосвязи, коронавирусная инфекция, пространственно-временное моделирование, панельные данные, региональные системы.
Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.
-
Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.
Ключевые слова: гемостаз, тромбоз, компьютерное моделирование, фибринолиз, тромболизис, тромбоциты, тромбин, каскадсв ертывания.
Current issues in computational modeling of thrombosis, fibrinolysis, and thrombolysis
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 975-995Hemostasis system is one of the key body’s defense systems, which is presented in all the liquid tissues and especially important in blood. Hemostatic response is triggered as a result of the vessel injury. The interaction between specialized cells and humoral systems leads to the formation of the initial hemostatic clot, which stops bleeding. After that the slow process of clot dissolution occurs. The formation of hemostatic plug is a unique physiological process, because during several minutes the hemostatic system generates complex structures on a scale ranging from microns for microvessel injury or damaged endothelial cell-cell contacts, to centimeters for damaged systemic arteries. Hemostatic response depends on the numerous coordinated processes, which include platelet adhesion and aggregation, granule secretion, platelet shape change, modification of the chemical composition of the lipid bilayer, clot contraction, and formation of the fibrin mesh due to activation of blood coagulation cascade. Computer modeling is a powerful tool, which is used to study this complex system at different levels of organization. This includes study of intracellular signaling in platelets, modelling humoral systems of blood coagulation and fibrinolysis, and development of the multiscale models of thrombus growth. There are two key issues of the computer modeling in biology: absence of the adequate physico-mathematical description of the existing experimental data due to the complexity of the biological processes, and high computational complexity of the models, which doesn’t allow to use them to test physiologically relevant scenarios. Here we discuss some key unresolved problems in the field, as well as the current progress in experimental research of hemostasis and thrombosis. New findings lead to reevaluation of the existing concepts and development of the novel computer models. We focus on the arterial thrombosis, venous thrombosis, thrombosis in microcirculation and the problems of fibrinolysis and thrombolysis. We also briefly discuss basic types of the existing mathematical models, their computational complexity, and principal issues in simulation of thrombus growth in arteries.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"