Результаты поиска по 'методы оптимизации':
Найдено статей: 110
  1. Руденко В.Д., Юдин Н.Е., Васин А.А.
    Обзор выпуклой оптимизации марковских процессов принятия решений
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 329-353

    В данной статье проведен обзор как исторических достижений, так и современных результатов в области марковских процессов принятия решений (Markov Decision Process, MDP) и выпуклой оптимизации. Данный обзор является первой попыткой освещения на русском языке области обучения с подкреплением в контексте выпуклой оптимизации. Рассматриваются фундаментальное уравнение Беллмана и построенные на его основе критерии оптимальности политики — стратегии, принимающие решение по известному состоянию среды на данный момент. Также рассмотрены основные итеративные алгоритмы оптимизации политики, построенные на решении уравнений Беллмана. Важным разделом данной статьи стало рассмотрение альтернативы к подходу $Q$-обучения — метода прямой максимизации средней награды агента для избранной стратегии от взаимодействия со средой. Таким образом, решение данной задачи выпуклой оптимизации представимо в виде задачи линейного программирования. В работе демонстрируется, как аппарат выпуклой оптимизации применяется для решения задачи обучения с подкреплением (Reinforcement Learning, RL). В частности, показано, как понятие сильной двойственности позволяет естественно модифицировать постановку задачи RL, показывая эквивалентность между максимизацией награды агента и поиском его оптимальной стратегии. В работе также рассматривается вопрос сложности оптимизации MDP относительно количества троек «состояние–действие–награда», получаемых в результате взаимодействия со средой. Представлены оптимальные границы сложности решения MDP в случае эргодического процесса с бесконечным горизонтом, а также в случае нестационарного процесса с конечным горизонтом, который можно перезапускать несколько раз подряд или сразу запускать параллельно в нескольких потоках. Также в обзоре рассмотрены последние результаты по уменьшению зазора нижней и верхней оценки сложности оптимизации MDP с усредненным вознаграждением (Averaged MDP, AMDP). В заключение рассматриваются вещественнозначная параметризация политики агента и класс градиентных методов оптимизации через максимизацию $Q$-функции ценности. В частности, представлен специальный класс MDP с ограничениями на ценность политики (Constrained Markov Decision Process, CMDP), для которых предложен общий прямодвойственный подход к оптимизации, обладающий сильной двойственностью.

    Rudenko V.D., Yudin N.E., Vasin A.A.
    Survey of convex optimization of Markov decision processes
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 329-353

    This article reviews both historical achievements and modern results in the field of Markov Decision Process (MDP) and convex optimization. This review is the first attempt to cover the field of reinforcement learning in Russian in the context of convex optimization. The fundamental Bellman equation and the criteria of optimality of policy — strategies based on it, which make decisions based on the known state of the environment at the moment, are considered. The main iterative algorithms of policy optimization based on the solution of the Bellman equations are also considered. An important section of this article was the consideration of an alternative to the $Q$-learning approach — the method of direct maximization of the agent’s average reward for the chosen strategy from interaction with the environment. Thus, the solution of this convex optimization problem can be represented as a linear programming problem. The paper demonstrates how the convex optimization apparatus is used to solve the problem of Reinforcement Learning (RL). In particular, it is shown how the concept of strong duality allows us to naturally modify the formulation of the RL problem, showing the equivalence between maximizing the agent’s reward and finding his optimal strategy. The paper also discusses the complexity of MDP optimization with respect to the number of state–action–reward triples obtained as a result of interaction with the environment. The optimal limits of the MDP solution complexity are presented in the case of an ergodic process with an infinite horizon, as well as in the case of a non-stationary process with a finite horizon, which can be restarted several times in a row or immediately run in parallel in several threads. The review also reviews the latest results on reducing the gap between the lower and upper estimates of the complexity of MDP optimization with average remuneration (Averaged MDP, AMDP). In conclusion, the real-valued parametrization of agent policy and a class of gradient optimization methods through maximizing the $Q$-function of value are considered. In particular, a special class of MDPs with restrictions on the value of policy (Constrained Markov Decision Process, CMDP) is presented, for which a general direct-dual approach to optimization with strong duality is proposed.

  2. Подлипнова И.В., Дорн Ю.В., Склонин И.А.
    Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103

    С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.

    Podlipnova I.V., Dorn Y.V., Sklonin I.A.
    Cloud interpretation of the entropy model for calculating the trip matrix
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 89-103

    As the population of cities grows, the need to plan for the development of transport infrastructure becomes more acute. For this purpose, transport modeling packages are created. These packages usually contain a set of convex optimization problems, the iterative solution of which leads to the desired equilibrium distribution of flows along the paths. One of the directions for the development of transport modeling is the construction of more accurate generalized models that take into account different types of passengers, their travel purposes, as well as the specifics of personal and public modes of transport that agents can use. Another important direction of transport models development is to improve the efficiency of the calculations performed. Since, due to the large dimension of modern transport networks, the search for a numerical solution to the problem of equilibrium distribution of flows along the paths is quite expensive. The iterative nature of the entire solution process only makes this worse. One of the approaches leading to a reduction in the number of calculations performed is the construction of consistent models that allow to combine the blocks of a 4-stage model into a single optimization problem. This makes it possible to eliminate the iterative running of blocks, moving from solving a separate optimization problem at each stage to some general problem. Early work has proven that such approaches provide equivalent solutions. However, it is worth considering the validity and interpretability of these methods. The purpose of this article is to substantiate a single problem, that combines both the calculation of the trip matrix and the modal choice, for the generalized case when there are different layers of demand, types of agents and classes of vehicles in the transport network. The article provides possible interpretations for the gauge parameters used in the problem, as well as for the dual factors associated with the balance constraints. The authors of the article also show the possibility of combining the considered problem with a block for determining network load into a single optimization problem.

  3. Мизгулин В.В., Косульников В.В., Кадушников Р.М.
    Оптимизационный подход к имитационному моделированию микроструктур
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 597-606

    В работе предложен оптимизационный подход к имитационному моделированию микроструктур. Решены задачи оптимизации функции пористости, поиска оптимальной модели гранулометрического состава и введен критерий качества моделирования. Проведена проверка адекватности предложенных методов на примерах и предложена регрессионная модель качества имитационного моделирования микроструктур. Актуальным приложением предложенного подхода является задача 3D-реконструкции микроструктуры керна. Полученные результаты дают основания для продолжения исследований в выбранном направлении.

    Mizgulin V.V., Kosulnikov V.V., Kadushnikov R.M.
    The optimization approach to simulation modeling of microstructures
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 597-606

    The paper presents an optimization approach to microstructure simulation. Porosity function was optimized by numerical method, grain-size model was optimized by complex method based on criteria of model quality. Methods have been validated on examples. Presented new regression model of model quality. Actual application of proposed method is 3D reconstruction of core sample microstructure. Presented results suggest to prolongation of investigations. 

    Views (last year): 4. Citations: 7 (RSCI).
  4. Олейник Е.Б., Ивашина Н.В., Шмидт Ю.Д.
    Моделирование процессов миграции населения: методы и инструменты (обзор)
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232

    Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.

    Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.

    В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.

    Oleynik E.B., Ivashina N.V., Shmidt Y.D.
    Migration processes modelling: methods and tools (overview)
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232

    Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.

    Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.

    The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.

  5. Бабина О.И.
    Разработка оптимизационной имитационной модели для поддержки процессов планирования складских систем
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 295-307

    В статье рассматриваются вопросы применения метода оптимизации для поддержки процессов планирования складских системах с помощью технологии имитационного моделирования. Исследованы механизмы взаимосвязи оптимизационной и имитационной моделей, а также подробно описан алгоритм разработки оптимизационной имитационной модели складской системы для поддержки процессов планирования.

    Babina O.I.
    Development of simulation optimization model for support of planning processes of warehouse systems
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 295-307

    In the article, the questions of application of a optimization method for support of planning processes in warehouse systems by means of simulation are considered. Mechanisms of interrelation of optimization and simulation models are investigated, and also the algorithm of simulation optimization model development of warehouse system for support of planning processes is described in detail.

    Views (last year): 2. Citations: 3 (RSCI).
  6. Хусаинов Р.Р., Мамедов Ш.Н., Савин С.И., Климчик А.С.
    Поиск реализуемых энергоэффективных походок плоского пятизвенного двуногого робота с точечным контактом
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 155-170

    В статье рассматривается процесс поиска опорных траекторий движения плоского пятизвенного двуногого шагающего робота с точечным контактом. Для этого используются метод приведения динамики к низкоразмерному нулевому многообразию с помощью наложения виртуальных связей и алгоритмы нелинейной оптимизации для поиска параметров наложенных связей. Проведен анализ влияния степени полиномов Безье, аппроксимирующих виртуальные связи, а также условия непрерывности управляющих воздействий на энергоэффективность движения. Численные расчеты показали, что на практике достаточно рассматривать полиномы со степенями 5 или 6, так как дальнейшее увеличение степени приводит к увеличению вычислительных затрат, но не гарантирует уменьшение энергозатрат походки. Помимо этого, было установлено, что введение ограничений на непрерывность управляющих воздействий не приводит к существенному уменьшению энергоэффективности и способствует реализуемости походки на реальном роботе благодаря плавному изменению крутящих моментов в приводах. В работе показано, что для решения задачи поиска минимума целевой функции в виде энергозатрат при наличии большого количества ограничений целесообразно на первом этапе найти допустимые точки в пространстве параметров, а на втором этапе — осуществлять поиск локальных минимумов, стартуя с этих точек. Для первого этапа предложен алгоритм расчета начальных приближений искомых параметров, позволяющий сократить время поиска траекторий (в среднем до 3-4 секунд) по сравнению со случайным начальным приближением. Сравнение значений целевых функций на первом и на втором этапах показывает, что найденные на втором этапе локальные минимумы дают в среднем двукратный выигрыш по энергоэффективности в сравнении со случайно найденной на первом этапе допустимой точкой. При этом времязатраты на выполнение локальной оптимизации на втором этапе являются существенными.

    Khusainov R.R., Mamedov S.N., Savin S.I., Klimchik A.S.
    Searching for realizable energy-efficient gaits of planar five-link biped with a point contact
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 155-170

    In this paper, we discuss the procedure for finding nominal trajectories of the planar five-link bipedal robot with point contact. To this end we use a virtual constraints method that transforms robot’s dynamics to a lowdimensional zero manifold; we also use a nonlinear optimization algorithms to find virtual constraints parameters that minimize robot’s cost of transportation. We analyzed the effect of the degree of Bezier polynomials that approximate the virtual constraints and continuity of the torques on the cost of transportation. Based on numerical results we found that it is sufficient to consider polynomials with degrees between five and six, as further increase in the degree of polynomial results in increased computation time while it does not guarantee reduction of the cost of transportation. Moreover, it was shown that introduction of torque continuity constraints does not lead to significant increase of the objective function and makes the gait more implementable on a real robot.

    We propose a two step procedure for finding minimum of the considered optimization problem with objective function in the form of cost of transportation and with high number of constraints. During the first step we solve a feasibility problem: remove cost function (set it to zero) and search for feasible solution in the parameter space. During the second step we introduce the objective function and use the solution found in the first step as initial guess. For the first step we put forward an algorithm for finding initial guess that considerably reduced optimization time of the first step (down to 3–4 seconds) compared to random initialization. Comparison of the objective function of the solutions found during the first and second steps showed that on average during the second step objective function was reduced twofold, even though overall computation time increased significantly.

  7. В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.

    Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.

    Popov D.I.
    Calibration of an elastostatic manipulator model using AI-based design of experiment
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1535-1553

    This paper demonstrates the advantages of using artificial intelligence algorithms for the design of experiment theory, which makes possible to improve the accuracy of parameter identification for an elastostatic robot model. Design of experiment for a robot consists of the optimal configuration-external force pairs for the identification algorithms and can be described by several main stages. At the first stage, an elastostatic model of the robot is created, taking into account all possible mechanical compliances. The second stage selects the objective function, which can be represented by both classical optimality criteria and criteria defined by the desired application of the robot. At the third stage the optimal measurement configurations are found using numerical optimization. The fourth stage measures the position of the robot body in the obtained configurations under the influence of an external force. At the last, fifth stage, the elastostatic parameters of the manipulator are identified based on the measured data.

    The objective function required to finding the optimal configurations for industrial robot calibration is constrained by mechanical limits both on the part of the possible angles of rotation of the robot’s joints and on the part of the possible applied forces. The solution of this multidimensional and constrained problem is not simple, therefore it is proposed to use approaches based on artificial intelligence. To find the minimum of the objective function, the following methods, also sometimes called heuristics, were used: genetic algorithms, particle swarm optimization, simulated annealing algorithm, etc. The obtained results were analyzed in terms of the time required to obtain the configurations, the optimal value, as well as the final accuracy after applying the calibration. The comparison showed the advantages of the considered optimization techniques based on artificial intelligence over the classical methods of finding the optimal value. The results of this work allow us to reduce the time spent on calibration and increase the positioning accuracy of the robot’s end-effector after calibration for contact operations with high loads, such as machining and incremental forming.

  8. Кольцов Ю.В., Бобошко Е.В.
    Сравнительный анализ методов оптимизации для решения задачи интервальной оценки потерь электроэнергии
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 231-239

    Данная работа посвящена сравнительному анализу оптимизационных методов и алгоритмов для проведения интервальной оценки технических потерь электроэнергии в распределительных сетях напряжением 6–20 кВ. Задача интервальной оценки потерь сформулирована в виде задачи многомерной условной минимизации/максимизации с неявной целевой функцией. Рассмотрен ряд методов численной оптимизации первого и нулевого порядков, с целью определения наиболее подходящего для решения рассмотренной проблемы. Таким является алгоритм BOBYQA, в котором целевая функция заменяется ее квадратичной аппроксимацией в пределах доверительной области.

    Koltsov Y.V., Boboshko E.V.
    Comparative analysis of optimization methods for electrical energy losses interval evaluation problem
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 231-239

    This article is dedicated to a comparison analysis of optimization methods, in order to perform an interval estimation of electrical energy technical losses in distribution networks of voltage 6–20 kV. The issue of interval evaluation is represented as a multi-dimensional conditional minimization/maximization problem with implicit target function. A number of numerical optimization methods of first and zero orders is observed, with the aim of determining the most suitable for the problem of interest. The desired algorithm is BOBYQA, in which the target function is replaced with its quadratic approximation in some trusted region.

    Views (last year): 2. Citations: 1 (RSCI).
  9. Остроухов П.А., Камалов Р.А., Двуреченский П.Е., Гасников А.В.
    Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376

    В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.

    Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.

    Ostroukhov P.A., Kamalov R.A., Dvurechensky P.E., Gasnikov A.V.
    Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 357-376

    In this paper we propose high-order (tensor) methods for two types of saddle point problems. Firstly, we consider the classic min-max saddle point problem. Secondly, we consider the search for a stationary point of the saddle point problem objective by its gradient norm minimization. Obviously, the stationary point does not always coincide with the optimal point. However, if we have a linear optimization problem with linear constraints, the algorithm for gradient norm minimization becomes useful. In this case we can reconstruct the solution of the optimization problem of a primal function from the solution of gradient norm minimization of dual function. In this paper we consider both types of problems with no constraints. Additionally, we assume that the objective function is $\mu$-strongly convex by the first argument, $\mu$-strongly concave by the second argument, and that the $p$-th derivative of the objective is Lipschitz-continous.

    For min-max problems we propose two algorithms. Since we consider strongly convex a strongly concave problem, the first algorithm uses the existing tensor method for regular convex concave saddle point problems and accelerates it with the restarts technique. The complexity of such an algorithm is linear. If we additionally assume that our objective is first and second order Lipschitz, we can improve its performance even more. To do this, we can switch to another existing algorithm in its area of quadratic convergence. Thus, we get the second algorithm, which has a global linear convergence rate and a local quadratic convergence rate.

    Finally, in convex optimization there exists a special methodology to solve gradient norm minimization problems by tensor methods. Its main idea is to use existing (near-)optimal algorithms inside a special framework. I want to emphasize that inside this framework we do not necessarily need the assumptions of strong convexity, because we can regularize the convex objective in a special way to make it strongly convex. In our article we transfer this framework on convex-concave objective functions and use it with our aforementioned algorithm with a global linear convergence and a local quadratic convergence rate.

    Since the saddle point problem is a particular case of the monotone variation inequality problem, the proposed methods will also work in solving strongly monotone variational inequality problems.

  10. Скорик С.Н., Пырэу В.В., Седов С.А., Двинских Д.М.
    Сравнение оценок онлайн- и офлайн-подходов для седловой задачи в билинейной форме
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 381-391

    Стохастическая оптимизация является актуальным направлением исследования в связи со значительными успехами в области машинного обучения и их применениями для решения повседневных задач. В данной работе рассматриваются два принципиально различных метода решения задачи стохастической оптимизации — онлайн- и офлайн-алгоритмы. Соответствующие алгоритмы имеют свои качественные преимущества перед друг другом. Так, для офлайн-алгоритмов требуется решать вспомогательную задачу с высокой точностью. Однако это можно делать распределенно, и это открывает принципиальные возможности, как, например, построение двойственной задачи. Несмотря на это, и онлайн-, и офлайн-алгоритмы преследуют общую цель — решение задачи стохастической оптимизации с заданной точностью. Это находит отражение в сравнении вычислительной сложности описанных алгоритмов, что демонстрируется в данной работе.

    Сравнение описанных методов проводится для двух типов стохастических задач — выпуклой оптимизации и седел. Для задач стохастической выпуклой оптимизации существующие решения позволяют довольно подробно сравнить онлайн- и офлайн-алгоритмы. В частности, для сильно выпуклых задач вычислительная сложность алгоритмов одинаковая, причем условие сильной выпуклости может быть ослаблено до условия $\gamma$-роста целевой функции. С этой точки зрения седловые задачи являются гораздо менее изученными. Тем не менее существующие решения позволяют наметить основные направления исследования. Так, значительные продвижения сделаны для билинейных седловых задач с помощью онлайн-алгоритмов. Оффлайн-алгоритмы представлены всего одним исследованием. В данной работе на этом примере демонстрируется аналогичная с выпуклой оптимизацией схожесть обоих алгоритмов. Также был проработан вопрос точности решения вспомогательной задачи для седел. С другой стороны, седловая задача стохастической оптимизации обобщает выпуклую, то есть является ее логичным продолжением. Это проявляется в том, что существующие результаты из выпуклой оптимизации можно перенести на седла. В данной работе такой перенос осуществляется для результатов онлайн-алгоритма в выпуклом случае, когда целевая функция удовлетворяет условию $\gamma$-роста.

    Skorik S.N., Pirau V.V., Sedov S.A., Dvinskikh D.M.
    Comparsion of stochastic approximation and sample average approximation for saddle point problem with bilinear coupling term
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 381-391

    Stochastic optimization is a current area of research due to significant advances in machine learning and their applications to everyday problems. In this paper, we consider two fundamentally different methods for solving the problem of stochastic optimization — online and offline algorithms. The corresponding algorithms have their qualitative advantages over each other. So, for offline algorithms, it is required to solve an auxiliary problem with high accuracy. However, this can be done in a distributed manner, and this opens up fundamental possibilities such as, for example, the construction of a dual problem. Despite this, both online and offline algorithms pursue a common goal — solving the stochastic optimization problem with a given accuracy. This is reflected in the comparison of the computational complexity of the described algorithms, which is demonstrated in this paper.

    The comparison of the described methods is carried out for two types of stochastic problems — convex optimization and saddles. For problems of stochastic convex optimization, the existing solutions make it possible to compare online and offline algorithms in some detail. In particular, for strongly convex problems, the computational complexity of the algorithms is the same, and the condition of strong convexity can be weakened to the condition of $\gamma$-growth of the objective function. From this point of view, saddle point problems are much less studied. Nevertheless, existing solutions allow us to outline the main directions of research. Thus, significant progress has been made for bilinear saddle point problems using online algorithms. Offline algorithms are represented by just one study. In this paper, this example demonstrates the similarity of both algorithms with convex optimization. The issue of the accuracy of solving the auxiliary problem for saddles was also worked out. On the other hand, the saddle point problem of stochastic optimization generalizes the convex one, that is, it is its logical continuation. This is manifested in the fact that existing results from convex optimization can be transferred to saddles. In this paper, such a transfer is carried out for the results of the online algorithm in the convex case, when the objective function satisfies the $\gamma$-growth condition.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"