All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 18.
-
Подход к решению невыпуклой равномерно вогнутой седловой задачи со структурой
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 225-237В последнее время седловым задачам уделяется большое внимание благодаря их мощным возможностям моделирования для множества задач из различных областей. Приложения этих задач встречаются в многочисленных современных прикладных областях, таких как робастная оптимизация, распределенная оптимизация, теория игр и~приложения машинного обучения, такие как, например, минимизация эмпирического риска или обучение генеративно-состязательных сетей. Поэтому многие исследователи активно работают над разработкой численных методов для решения седловых задач в самых разных предположениях. Данная статья посвящена разработке численного метода решения седловых задач в невыпуклой равномерно вогнутой постановке. В этой постановке считается, что по группе прямых переменных целевая функция может быть невыпуклой, а по группе двойственных переменных задача является равномерно вогнутой (это понятие обобщает понятие сильной вогнутости). Был изучен более общий класс седловых задач со сложной композитной структурой и гёльдерово непрерывными производными высшего порядка. Для решения рассматриваемой задачи был предложен подход, при котором мы сводим задачу к комбинации двух вспомогательных оптимизационных задач отдельно для каждой группы переменных: внешней задачи минимизации и~внутренней задачи максимизации. Для решения внешней задачи минимизации мы используем адаптивный градиентный метод, который применим для невыпуклых задач, а также работает с неточным оракулом, который генерируется путем неточного решения внутренней задачи максимизации. Для решения внутренней задачи максимизации мы используем обобщенный ускоренный метод с рестартами, который представляет собой метод, объединяющий методы ускорения высокого порядка для минимизации выпуклой функции, имеющей гёльдерово непрерывные производные высшего порядка. Важной компонентой проведенного анализа сложности предлагаемого алгоритма является разделение оракульных сложностей на число вызовов оракула первого порядка для внешней задачи минимизации и оракула более высокого порядка для внутренней задачи максимизации. Более того, оценивается сложность всего предлагаемого подхода.
Ключевые слова: седловая задача, невыпуклая оптимизация, равномерно выпуклая функция, неточный оракул, метод высшего порядка.
An approach for the nonconvex uniformly concave structured saddle point problem
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.
-
Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.
Ключевые слова: электрофизиология, детальные модели, концептуальные модели, жесткие системы, численные методы.
Application of simplified implicit Euler method for electrophysiological models
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 845-864A simplified implicit Euler method was analyzed as an alternative to the explicit Euler method, which is a commonly used method in numerical modeling in electrophysiology. The majority of electrophysiological models are quite stiff, since the dynamics they describe includes a wide spectrum of time scales: a fast depolarization, that lasts milliseconds, precedes a considerably slow repolarization, with both being the fractions of the action potential observed in excitable cells. In this work we estimate stiffness by a formula that does not require calculation of eigenvalues of the Jacobian matrix of the studied ODEs. The efficiency of the numerical methods was compared on the case of typical representatives of detailed and conceptual type models of excitable cells: Hodgkin–Huxley model of a neuron and Aliev–Panfilov model of a cardiomyocyte. The comparison of the efficiency of the numerical methods was carried out via norms that were widely used in biomedical applications. The stiffness ratio’s impact on the speedup of simplified implicit method was studied: a real gain in speed was obtained for the Hodgkin–Huxley model. The benefits of the usage of simple and high-order methods for electrophysiological models are discussed along with the discussion of one method’s stability issues. The reasons for using simplified instead of high-order methods during practical simulations were discussed in the corresponding section. We calculated higher order derivatives of the solutions of Hodgkin-Huxley model with various stiffness ratios; their maximum absolute values appeared to be quite large. A numerical method’s approximation constant’s formula contains the latter and hence ruins the effect of the other term (a small factor which depends on the order of approximation). This leads to the large value of global error. We committed a qualitative stability analysis of the explicit Euler method and were able to estimate the model’s parameters influence on the border of the region of absolute stability. The latter is used when setting the value of the timestep for simulations a priori.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"