Результаты поиска по 'stiff systems':
Найдено статей: 11
  1. Zubanov A.M., Kutruhin N.N., Shirkov P.D.
    Constructing of linearly implicit schemes which are LN-equivalent to implicit Runge–Kutta methods
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 483-496

    New family of linearly implicit schemes are presented. This family allows to obtain methods which are equivalent to stiffly accurate implicit Runge–Kutta schemes (such as RadauIIA and LobattoIIIC) on nonautonomous linear problems. Notion of LN-equivalence of schemes is introduced. Order conditions and stability conditions of such methods are obtained with the use of media for computer symbolic calculations. Some examples of new schemes have been constructed. Numerical studying of new method have been done with the use of classical tests for stiff problems.

    Views (last year): 2. Citations: 2 (RSCI).
  2. Gaiko V.A., Savin S.I., Klimchik A.S.
    Global limit cycle bifurcations of a polynomial Euler–Lagrange–Liénard system
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 693-705

    In this paper, using our bifurcation-geometric approach, we study global dynamics and solve the problem of the maximum number and distribution of limit cycles (self-oscillating regimes corresponding to states of dynamical equilibrium) in a planar polynomial mechanical system of the Euler–Lagrange–Liйnard type. Such systems are also used to model electrical, ecological, biomedical and other systems, which greatly facilitates the study of the corresponding real processes and systems with complex internal dynamics. They are used, in particular, in mechanical systems with damping and stiffness. There are a number of examples of technical systems that are described using quadratic damping in second-order dynamical models. In robotics, for example, quadratic damping appears in direct-coupled control and in nonlinear devices, such as variable impedance (resistance) actuators. Variable impedance actuators are of particular interest to collaborative robotics. To study the character and location of singular points in the phase plane of the Euler–Lagrange–Liйnard polynomial system, we use our method the meaning of which is to obtain the simplest (well-known) system by vanishing some parameters (usually, field rotation parameters) of the original system and then to enter sequentially these parameters studying the dynamics of singular points in the phase plane. To study the singular points of the system, we use the classical Poincarй index theorems, as well as our original geometric approach based on the application of the Erugin twoisocline method which is especially effective in the study of infinite singularities. Using the obtained information on the singular points and applying canonical systems with field rotation parameters, as well as using the geometric properties of the spirals filling the internal and external regions of the limit cycles and applying our geometric approach to qualitative analysis, we study limit cycle bifurcations of the system under consideration.

  3. Shirkov P.D., Zubanov A.M.
    Two-stage single ROW methods with complex coefficients for autonomous systems of ODE
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 19-32

    The basic subset of two-stage Rosenbrock schemes with complex coefficients for numerical solution of autonomous systems of ordinary differential equations (ODE) has been considered. Numerical realization of such schemes requires one LU-decomposition, two computations of right side function and one computation of Jacoby matrix of the system per one step. The full theoretical investigation of accuracy and stability of such schemes have been done. New A-stable methods of the 3-rd order of accuracy with different properties have been constructed. There are high order L-decremented schemes as well as schemes with simple estimation of the main term of truncation error which is necessary for automatic evaluation of time step. Testing of new methods has been performed.

    Citations: 1 (RSCI).
  4. Peskova E.E., Snytnikov V.N., Zhalnin R.V.
    The computational algorithm for studying internal laminar flows of a multicomponent gas with different-scale chemical processes
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1169-1187

    The article presented the computational algorithm developed to study chemical processes in the internal flows of a multicomponent gas under the influence of laser radiation. The mathematical model is the gas dynamics’ equations with chemical reactions at low Mach numbers. It takes into account dissipative terms that describe the dynamics of a viscous heat-conducting medium with diffusion, chemical reactions and energy supply by laser radiation. This mathematical model is characterized by the presence of several very different time and spatial scales. The computational algorithm is based on a splitting scheme by physical processes. Each time integration step is divided into the following blocks: solving the equations of chemical kinetics, solving the equation for the radiation intensity, solving the convection-diffusion equations, calculating the dynamic component of pressure and calculating the correction of the velocity vector. The solution of a stiff system of chemical kinetics equations is carried out using a specialized explicit second-order accuracy scheme or a plug-in RADAU5 module. Numerical Rusanov flows and a WENO scheme of an increased order of approximation are used to find convective terms in the equations. The code based on the obtained algorithm has been developed using MPI parallel computing technology. The developed code is used to calculate the pyrolysis of ethane with radical reactions. The superequilibrium concentrations’ formation of radicals in the reactor volume is studied in detail. Numerical simulation of the reaction gas flow in a flat tube with laser radiation supply is carried out, which is in demand for the interpretation of experimental results. It is shown that laser radiation significantly increases the conversion of ethane and yields of target products at short lengths closer to the entrance to the reaction zone. Reducing the effective length of the reaction zone allows us to offer new solutions in the design of ethane conversion reactors into valuable hydrocarbons. The developed algorithm and program will find their application in the creation of new technologies of laser thermochemistry.

  5. Kopysov S.P., Kuzmin I.M., Nedozhogin N.S., Novikov A.K., Rychkov V.N., Sagdeeva Y.A., Tonkov L.E.
    Parallel implementation of a finite-element algorithms on a graphics accelerator in the software package FEStudio
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 79-97

    In this paper, we present new parallel algorithms for finite element analysis implemented in the FEStudio software framework. We describe the programming model of finite element method, which supports parallelism on different stages of numerical simulations. Using this model, we develop parallel algorithms of numerical integration for dynamic problems and local stiffness matrices. For constructing and solving the systems of equations, we use the CUDA programming platform.

    Views (last year): 4. Citations: 24 (RSCI).
  6. Kondratov D.V., Tatiana K.S., Popov V.S., Popova A.A.
    Modelling hydroelastic response of a plate resting on a nonlinear foundation and interacting with a pulsating fluid layer
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 581-597

    The paper formulates a mathematical model for hydroelastic oscillations of a plate resting on a nonlinear hardening elastic foundation and interacting with a pulsating fluid layer. The main feature of the proposed model, unlike the wellknown ones, is the joint consideration of the elastic properties of the plate, the nonlinearity of elastic foundation, as well as the dissipative properties of the fluid and the inertia of its motion. The model is represented by a system of equations for a twodimensional hydroelasticity problem including dynamics equation of Kirchhoff’s plate resting on the elastic foundation with hardening cubic nonlinearity, Navier – Stokes equations, and continuity equation. This system is supplemented by boundary conditions for plate deflections and fluid pressure at plate ends, as well as for fluid velocities at the bounding walls. The model was investigated by perturbation method with subsequent use of iteration method for the equations of thin layer of viscous fluid. As a result, the fluid pressure distribution at the plate surface was obtained and the transition to an integrodifferential equation describing bending hydroelastic oscillations of the plate is performed. This equation is solved by the Bubnov –Galerkin method using the harmonic balance method to determine the primary hydroelastic response of the plate and phase response due to the given harmonic law of fluid pressure pulsation at plate ends. It is shown that the original problem can be reduced to the study of the generalized Duffing equation, in which the coefficients at inertial, dissipative and stiffness terms are determined by the physical and mechanical parameters of the original system. The primary hydroelastic response and phases response for the plate are found. The numerical study of these responses is performed for the cases of considering the inertia of fluid motion and the creeping fluid motion for the nonlinear and linearly elastic foundation of the plate. The results of the calculations showed the need to jointly consider the viscosity and inertia of the fluid motion together with the elastic properties of the plate and its foundation, both for nonlinear and linear vibrations of the plate.

  7. Gubaydullin I.M., Yazovtseva O.S.
    Investigation of the averaged model of coked catalyst oxidative regeneration
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161

    The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.

    The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.

    The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.

    The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.

    In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.

  8. Karpaev A.A., Aliev R.R.
    Application of simplified implicit Euler method for electrophysiological models
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 845-864

    A simplified implicit Euler method was analyzed as an alternative to the explicit Euler method, which is a commonly used method in numerical modeling in electrophysiology. The majority of electrophysiological models are quite stiff, since the dynamics they describe includes a wide spectrum of time scales: a fast depolarization, that lasts milliseconds, precedes a considerably slow repolarization, with both being the fractions of the action potential observed in excitable cells. In this work we estimate stiffness by a formula that does not require calculation of eigenvalues of the Jacobian matrix of the studied ODEs. The efficiency of the numerical methods was compared on the case of typical representatives of detailed and conceptual type models of excitable cells: Hodgkin–Huxley model of a neuron and Aliev–Panfilov model of a cardiomyocyte. The comparison of the efficiency of the numerical methods was carried out via norms that were widely used in biomedical applications. The stiffness ratio’s impact on the speedup of simplified implicit method was studied: a real gain in speed was obtained for the Hodgkin–Huxley model. The benefits of the usage of simple and high-order methods for electrophysiological models are discussed along with the discussion of one method’s stability issues. The reasons for using simplified instead of high-order methods during practical simulations were discussed in the corresponding section. We calculated higher order derivatives of the solutions of Hodgkin-Huxley model with various stiffness ratios; their maximum absolute values appeared to be quite large. A numerical method’s approximation constant’s formula contains the latter and hence ruins the effect of the other term (a small factor which depends on the order of approximation). This leads to the large value of global error. We committed a qualitative stability analysis of the explicit Euler method and were able to estimate the model’s parameters influence on the border of the region of absolute stability. The latter is used when setting the value of the timestep for simulations a priori.

  9. Safiullina L.F., Gubaydullin I.M.
    Analysis of the identifiability of the mathematical model of propane pyrolysis
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057

    The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.

    The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).

    To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.

    The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.

  10. Shardyko I.V., Kopylov V.M., Volnyakov K.A.
    Design, modeling, and control of a variable stiffness joint based on a torsional magnetic spring
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1323-1347

    Industrial robots have made it possible for robotics to become a worldwide discipline both in economy and in science. However, their capabilities are limited, especially regarding contact tasks where it is required to regulate or at least limit contact forces. At one point, it was noticed that elasticity in the joint transmission, which was treated as a drawback previously, is actually helpful in this regard. This observation led to the introduction of elastic joint robots that are well-suited to contact tasks and cooperative behavior in particular, so they become more and more widespread nowadays. Many researchers try to implement such devices not with trivial series elastic actuators (SEA) but with more sophisticated variable stiffness actuators (VSA) that can regulate their own mechanical stiffness. All elastic actuators demonstrate shock robustness and safe interaction with external objects to some extent, but when stiffness may be varied, it provides additional benefits, e. g., in terms of energy efficiency and task adaptability. Here, we present a novel variable stiffness actuator with a magnetic coupler as an elastic element. Magnetic transmission is contactless and thus advantageous in terms of robustness to misalignment. In addition, the friction model of the transmission becomes less complex. It also has milder stiffness characteristic than typical mechanical nonlinear springs, moreover, the stiffness curve has a maximum after which it descends. Therefore, when this maximum torque is achieved, the coupler slips, and a new pair of poles defines the equilibrium position. As a result, the risk of damage is smaller for this design solution. The design of the joint is thoroughly described, along with its mathematical model. Finally, the control system is also proposed, and simulation tests confirm the design ideas.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"