All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Автономная нетерова краевая задача в частном критическом случае
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 337-351Найдены необходимые и достаточные условия существования решений нелинейной автономной краевой задачи в частном критическом случае. Характерной особенностью поставленной задачи является невозможность непосредственного применения традиционной схемы исследования и построения решений критических краевых задач, созданной в работах И.Г. Малкина, А.М. Самойленко, Е.А. Гребеникова, Ю.А. Рябова и А.А. Бойчука. Для построения решений нелинейной нетеровой краевой задачи в частном критическом случае предложена итерационная схема, построенная по схеме метода наименьших квадратов. Эффективность техники продемонстрирована на примере анализа периодической задачи для уравнения типа Хилла.
Ключевые слова: автономная краевая задача, частный критический случай, метод наименьших квадратов, итерационная схема.
Autonomous Noetherian boundaryvalue problem in special critical case
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 337-351Views (last year): 4. Citations: 1 (RSCI).The necessary and sufficient terms of solution existence of nonlinear autonomous Noetherian boundary-value problem are found in special critical case. The characteristic feature of the set problems is impossibility of direct application of traditional research schematic representation and construction of solutions of critical boundary-value problems, which was created in works of I.G. Malkin, A.M. Samoilenko, E.A. Grebenikov, Yu.A. Ryabov and A.A. Boichuk. For the solution construction of Noetherian boundary-value problem in special critical case an iterative procedure is recommended, it is constructed according to the scheme of least-squares method. Efficiency of the offered technique is shown on the example of analysis for periodic problems for Hill equation.
-
Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.
Ключевые слова: аппроксимация, сплайн, численные методы, метод конечных элементов, математическая физика, теория упругости.
Mathematical modeling of bending of a circular plate using $S$-splines
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 977-988Views (last year): 4.This article is dedicated to the use of higher degree $S$-splines for solving equations of the elasticity theory. As an example we consider the solution to the equation of bending of a plate on a circle. $S$-spline is a piecewise-polynomial function. Its coefficients are defined by two conditions. The first part of the coefficients are defined by the smoothness of the spline. The rest are determined using the least-squares method. We consider class $C^4$ 7th degree $S$-splines.
- Views (last year): 1.
-
Модифицированная двухшаговая итерационная техника для построения функций Матье
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 31-43Предложена модифицированная двухшаговая итерационная техника, построенная по схеме метода наименьших квадратов, определяющая последовательные приближения к периодическим решениям уравнения Матье и его собственным функциям, значительно превосходящие по точности ранее известные результаты.
The modified twosweep iteration technique for the constraction of Mathieu’s functions
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 31-43Views (last year): 1.The modified two-sweep iteration procedure was proposed, built according to the least-squares method scheme, which determines progressive approximations to the periodic solution of Mathieu’s equation and his own function, considerably superior according to the accuracy earlier well-known results.
-
Полулокальные сглаживающие S-сплайны
Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 349-357Настоящая работа посвящена периодическим и непериодическим полулокальным сглаживающим сплайнам или S-сплайнам класса Cp, состоящим из полиномов степени n.
Первые p + 1 коэффициентов каждого полинома задаются значениями предыдущего полинома и его p первых производных в точке склейки, остальные n − p коэффициентов при старших производных полинома определяются методом наименьших квадратов. Эти условия дополняются или начальными условиями (непериодический случай), или условием периодичности сплайн-функции на отрезке определения. В работе выписана система линейных уравнений, определяющих коэффициенты полиномов, составляющих сплайн. Матрица системы имеет блочный вид. Доказаны теоремы существования и единственности. Показано, что сходимость сплайнов к исходной функции зависит от величин собственных значений матрицы устойчивости. Приведены примеры устойчивых S-сплайнов.Ключевые слова: аппроксимация, сглаживающий полулокальный сплайн, численный анализ, численные методы.Views (last year): 1. Citations: 6 (RSCI).Semilocal smoothing splines or S-splines from class C p are considered. These splines consist of polynomials of a degree n, first p + 1 coefficients of each polynomial are determined by values of the previous polynomial and p its derivatives at the point of splice, coefficients at higher terms of the polynomial are determined by the least squares method. These conditions are supplemented by the periodicity condition for the spline function on the whole segment of definition or by initial conditions. Uniqueness and existence theorems are proved. Stability and convergence conditions for these splines are established.
-
Периодическая задача для уравнения Хилла в случае параметрического резонанса
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 27-43Найдены необходимые и достаточные условия существования решений нелинейной неавтономной периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Характерной особенностью поставленной задачи является необходимость нахождения как искомого решения, так и соответствующей собственной функции, обеспечивающей разрешимость периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Для построения решений периодической задачи для уравнения типа Хилла и соответствующей собственной функции в случае параметрического резонанса предложены итерационные схемы, построенные методу простых итераций, а также с использованием техники наименьших квадратов.
Ключевые слова: нелинейная неавтономная периодическая краевая задача, уравнение типа Хилла, случай параметрического резонанса, метод простых итераций.
Periodic boudary-value problem for Hill's equation in the case of parametric resonance
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 27-43Views (last year): 1.Necessary and sufficient conditions for the existence of solutions of nonlinear nonautonomous periodic problem for Hill’s equation in the case of parametric resonance. A characteristic feature of the task is the need of finding, as desired solution, and the corresponding eigenfunction, which ensures solvability of the periodic problem for Hill’s equation in the case of parametric resonance. To construct solutions of the periodic problem for Hill’s equation and the corresponding eigenfunction in the case of parametric resonance proposed iterative scheme, based on the method of simple iterations with used list-square technics.
-
Бессеточный алгоритм расчета взаимодействия крупных частиц с ударным слоем в сверхзвуковых гетерогенных потоках
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1007-1027Работа посвящена численному моделированию двухфазных течений, а именно расчету сверхзвукового обтекания затупленного тела потоком вязкого газа с примесью относительно крупных частиц, масса которых позволяет после отражения от поверхности выйти за пределы ударного слоя, двигаясь по инерции навстречу набегающему потоку. Натурные и вычислительные эксперименты показывают, что движение высокоинерционных частиц существенным образом изменяет структуру течения газа в ударном слое, а формирующиеся при этом направленные на тело импактные струи вызывают увеличение давления газа вблизи участков поверхности и кратный рост конвективного теплового потока.
Построена математическая модель обтекания затупленного тела сверхзвуковым потоком вязкого газа с твердыми частицами. Решение системы нестационарных уравнений Навье–Стокса в консервативных переменных осуществляется бессеточным методом, в основе которого лежит аппроксимация частных пространственных производных газодинамических величин и содержащих их функций методом наименьших квадратов на множестве распределенных в области расчета узлов. Расчет невязких потоков выполняется методом HLLC в сочетании с MUSCL-реконструкцией третьего порядка, вязких потоков — схемой второго порядка. МНК-аппроксимация частных производных параметров газа по направлению также применяется для реализации краевых условий Неймана на выходной границе области расчета, а также поверхностях обтекаемых тел, которые считаются изотермическими твердыми стенками.
Каждое движущееся тело окружено облаком расчетных узлов, принадлежащих его домену и перемещающихся вместе с ним в пространстве. Реализовано два подхода к моделированию перемещения объектов с учетом обратного влияния на течение газа: метод скользящих облаков фиксированной формы и эволюции единого облака узлов, представляющего собой объединение узлов разных доменов. Проведенные численные эксперименты подтвердили применимость предложенных методов к решению целевых задач моделирования движения крупных частиц в сверхзвуковом потоке.
Выполнена программная реализация представленных алгоритмов на основе технологии параллельных гетерогенных вычислений OpenCL. Представлены результаты моделирования движения крупной частицы вдоль оси симметрии сферы навстречу набегающему потоку с числом Маха $\mathrm{M}=6$.
Ключевые слова: численное моделирование, нестационарные уравнения Навье – Стокса, сверхзвуковое обтекание тел, запыленный поток, бессеточный метод, подвижная граница.
Meshless algorithm for calculating the interaction of large particles with a shock layer in supersonic heterogeneous flows
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1007-1027The work is devoted to numerical modeling of two-phase flows, namely, the calculation of supersonic flow around a blunt body by a viscous gas flow with an admixture of large high inertia particles. The system of unsteady Navier – Stokes equations is numerically solved by the meshless method. It uses the cloud of points in space to represent the fields of gas parameters. The spatial derivatives of gas parameters and functions are approximated by the least square method to calculate convective and viscous fluxes in the Navier – Stokes system of equations. The convective fluxes are calculated by the HLLC method. The third-order MUSCL reconstruction scheme is used to achieve high order accuracy. The viscous fluxes are calculated by the second order approximation scheme. The streamlined body surface is represented by a model of an isothermal wall. It implements the conditions for the zero velocity and zero pressure gradient, which is also modeled using the least squares method.
Every moving body is surrounded by its own cloud of points belongs to body’s domain and moving along with it in space. The explicit three-sage Runge–Kutta method is used to solve numerically the system of gas dynamics equations in the main coordinate system and local coordinate systems of each particle.
Two methods for the moving objects modeling with reverse impact on the gas flow have been implemented. The first one uses stationary point clouds with fixed neighbors within the same domain. When regions overlap, some nodes of one domain, for example, the boundary nodes of the particle domain, are excluded from the calculation and filled with the values of gas parameters from the nearest nodes of another domain using the least squares approximation of gradients. The internal nodes of the particle domain are used to reconstruct the gas parameters in the overlapped nodes of the main domain. The second method also uses the exclusion of nodes in overlapping areas, but in this case the nodes of another domain take the place of the excluded neighbors to build a single connected cloud of nodes. At the same time, some of the nodes are moving, and some are stationary. Nodes membership to different domains and their relative speed are taken into account when calculating fluxes.
The results of modeling the motion of a particle in a stationary gas and the flow around a stationary particle by an incoming flow at the same relative velocity show good agreement for both presented methods.
-
Решение краевых задач с помощью S-сплайна
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 161-171Данная работа посвящена применению теории S-сплайнов для решения уравнений в частных производных на примере уравнения Пуассона. S-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. В зависимости от порядка рассматриваемых полиномов и соотношения между количеством условий первого и второго типов мы получаем S-сплайны с разными свойствами. На настоящий момент изучены сплайны 3-й степени класса C1 и сплайны 5-й степени класса C2(т.е. на них накладывались условия гладкой склейки вплоть до первой и второй производных соответственно). Мы рассмотрим, каким образом могут быть применены сплайны 3-й степени класса C1 при решении уравнения Пуассона на круге и в других областях.
Solving of boundary tasks by using S-spline
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 161-171Views (last year): 8. Citations: 8 (RSCI).This article is dedicated to use of S-spline theory for solving equations in partial derivatives. For example, we consider solution of the Poisson equation. S-spline — is a piecewise-polynomial function. Its coefficients are defined by two states. The first part of coefficients are defined by smoothness of the spline. The second coefficients are determined by least-squares method. According to order of considered polynomial and number of conditions of first and second type we get S-splines with different properties. At this moment we have investigated order 3 S-splines of class C1 and order 5 S-splines of class C2 (they meet conditions of smoothness of order 1 and 2 respectively). We will consider how the order 3 S-splines of class C1 can be applied for solving equation of Poisson on circle and other areas.
-
Новый метод точечной оценки параметров парной регрессии
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 57-77Описывается новый метод отыскания параметров однофакторной регрессионной модели: метод наибольшего косинуса. Реализация метода предполагает разделение параметров модели на две группы. Параметры первой группы, отвечающие за угол между вектором экспериментальных данных и вектором регрессионной модели, определяются по максимуму косинуса угла между этими векторами. Во вторую группу входит масштабный множитель. Он определяется «спрямлением» зависимости координат вектора экспериментальных данных от координат вектора регрессионной модели. Исследована взаимосвязь метода наибольшего косинуса с методом наименьших квадратов. Эффективность метода проиллюстрирована примерами из физики.
Ключевые слова: парная регрессия, точечная оценка, метод наименьших квадратов, двухэкспоненциальная кинетика люминесценции, температура кипения воды, удельное электрическое сопротивление, модель Блоха–Грюнайзена.
A New Method For Point Estimating Parameters Of Simple Regression
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 57-77Views (last year): 2. Citations: 4 (RSCI).A new method is described for finding parameters of univariate regression model: the greatest cosine method. Implementation of the method involves division of regression model parameters into two groups. The first group of parameters responsible for the angle between the experimental data vector and the regression model vector are defined by the maximum of the cosine of the angle between these vectors. The second group includes the scale factor. It is determined by means of “straightening” the relationship between the experimental data vector and the regression model vector. The interrelation of the greatest cosine method with the method of least squares is examined. Efficiency of the method is illustrated by examples.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"