All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Процедура вывода явных, неявных и симметричных симплектических схем для численного решения гамильтоновых систем уравнений
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 861-871При моделировании методами классической молекулярной динамики поведения системы частиц используются уравнения движения в ньютоновской и гамильтоновой формулировке. При использовании уравнений Ньютона для получения координат и скоростей частиц системы, состоящей из $N$ частиц, требуется на каждом временном шаге в трехмерном случае решить $3N$ обыкновенных дифференциальных уравнений второго порядка. Традиционно для решения уравнений движения молекулярной динамики в ньютоновской формулировке используются численные схемы метода Верле. Для сохранения устойчивости численных схем Верле на достаточно больших интервалах времени приходится уменьшать шаг интегрирования. Это приводит к существенному увеличению объема вычислений. В большинстве современных пакетов программ молекулярной динамики для численного интегрирования уравнений движения используют схемы метода Верле с контролем сохранения гамильтониана (энергии системы) по времени. Для уменьшения времени вычислений при молекулярно-динамических расчетах можно использовать два дополняющих друг друга подхода. Первый основан на совершенствовании и программной оптимизации существующих пакетов программ молекулярной динамики с использованием векторизации, распараллеливания, спецпроцессоров. Второй подход основан на разработке эффективных методов численного интегрирования уравнений движения. В работе предложена процедура построения явных, неявных и симметричных симплектических численных схем с заданной точностью аппроксимации относительно шага интегрирования для решения уравнений движения молекулярной динамики в гамильтоновой форме. В основе подхода для построения предложенной в работе процедуры лежат следующие положения: гамильтонова формулировка уравнений движения, использование разложения точного решения в ряд Тейлора, использование для вывода численных схем аппарата производящих функций для сохранения геометрических свойств точного решения. Численные эксперименты показали, что полученная в работе симметричная симплектическая схема третьего порядка точности сохраняет в приближенном решении основные свойства точного решения, является более устойчивой по шагу аппроксимации и более точно сохраняет гамильтониан системы на большом интервале интегрирования, чем численные схемы метода Верле второго порядка.
Ключевые слова: гамильтоновы системы уравнений, симплектические разностные схемы, производящие функции, молекулярная динамика.
Procedure for constructing of explicit, implicit and symmetric simplectic schemes for numerical solving of Hamiltonian systems of equations
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 861-871Views (last year): 11.Equations of motion in Newtonian and Hamiltonian forms are used for classical molecular dynamics simulation of particle system time evolution. When Newton equations of motion are used for finding of particle coordinates and velocities in $N$-particle system it takes to solve $3N$ ordinary differential equations of second order at every time step. Traditionally numerical schemes of Verlet method are used for solving Newtonian equations of motion of molecular dynamics. A step of integration is necessary to decrease for Verlet numerical schemes steadiness conservation on sufficiently large time intervals. It leads to a significant increase of the volume of calculations. Numerical schemes of Verlet method with Hamiltonian conservation control (the energy of the system) at every time moment are used in the most software packages of molecular dynamics for numerical integration of equations of motion. It can be used two complement each other approaches to decrease of computational time in molecular dynamics calculations. The first of these approaches is based on enhancement and software optimization of existing software packages of molecular dynamics by using of vectorization, parallelization and special processor construction. The second one is based on the elaboration of efficient methods for numerical integration for equations of motion. A procedure for constructing of explicit, implicit and symmetric symplectic numerical schemes with given approximation accuracy in relation to integration step for solving of molecular dynamic equations of motion in Hamiltonian form is proposed in this work. The approach for construction of proposed in this work procedure is based on the following points: Hamiltonian formulation of equations of motion; usage of Taylor expansion of exact solution; usage of generating functions, for geometrical properties of exact solution conservation, in derivation of numerical schemes. Numerical experiments show that obtained in this work symmetric symplectic third-order accuracy scheme conserves basic properties of the exact solution in the approximate solution. It is more stable for approximation step and conserves Hamiltonian of the system with more accuracy at a large integration interval then second order Verlet numerical schemes.
-
Гибридные вычислительные системы на основе GPU для задач биоинформатики
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 163-167Статья посвящена преимуществам применения гибридных вычислительных систем на основе графических процессоров NVIDIA для решения задач моделирования молекулярной динамики, квантовой химии, секвенирования, приведены примеры приложений.
GPU-accelerated hybrid systems for high-performance computing in bio-informatics
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 163-167Views (last year): 2. Citations: 6 (RSCI).Modern GPUs are massively-parallel processors, offering substantial amount of computational power in energy-efficient package. We discuss the benefits of utilizing this computing power for modeling problems in bio-informatics, such as molecular dynamics, quantum chemistry and sequence analysis.
-
Моделирование белок-белковых взаимодействий с применением программного комплекса многочастичной броуновской динамики ProKSim
Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 47-64Белок-белковые взаимодействия являются основой большинства биологических процессов. Компьютерное моделирование динамики связывания белков дает важную информацию для понимания механизмов их функционирования. Разработана компьютерная программа ProKSim (Protein Kinetics Simulator), предназначенная для моделирования взаимодействия макромолекул методом многочастичной броуновской динамики с учетом дальнодействующих электростатических взаимодействий. Проведено исследование диффузионно-столкновительных комплексов для трех пар белков: ферредоксин и ферредоксин:НАДФ+-редуктаза, пластоцианин и цитохром f, барназа и барстар. Исследована роль электростатических взаимодействий во взаимной ориентации молекул белков при образовании диффузионно-столкновительных комплексов.
Ключевые слова: многочастичная броуновская динамика, белок-белковые взаимодействия, механизмы молекулярного распознавания.
Multi-particle Brownian Dynamics software ProKSim for protein-protein interactions modeling
Computer Research and Modeling, 2013, v. 5, no. 1, pp. 47-64Views (last year): 4. Citations: 8 (RSCI).Protein-protein interactions are of central importance for virtually every process in living matter. Modeling the dynamics of protein association is crucial for understanding their functionality. This paper proposes novel simulation software ProKSim (Protein Kinetics Simulator) for modeling of protein interactions by means of the multi-particle Brownian Dynamics. Effect of long-range electrostatic interactions on the process of transient encounter complex formation is numerically estimated. Investigation of transient encounter complex formation was performed for three pairs of proteins: ferredoxin and ferredoxin:NADP+-redustase, plastocyanin and cytochrome f, barnase and barstar.
-
Расчет структуры ударной волны в газовой смеси на основе уравнения Больцмана с контролем точности
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1107-1123В работе проведено исследование структуры ударной волны в бинарной газовой смеси на основе прямого решения кинетического уравнения Больцмана. Для вычисления интеграла столкновений в кинетическом уравнении используется консервативный проекционный метод. Детально описаны применяемые расчетные формулы и методика вычислений. В качестве потенциала взаимодействия молекул используется модель твердых сфер. Численное моделирование проводится с использованием разработанной программно-моделирующей среды, которая позволяет исследовать стационарные и нестационарные течения газовых смесей в различных режимах и для произвольной геометрии задачи. Моделирование выполняется на системе кластерной архитектуры. За счет использования технологий распараллеливания кода достигается значительное ускорение вычислений. С фиксированной точностью, контролируемой параметрами моделирования, получены распределения макроскопических величин компонентов смеси по фронту ударной волны. Расчеты выполнены для различных соотношений молекулярных масс и чисел Маха. Достигнута общая точность моделирования не менее 1% по локальным значениям концентрации и температуры и 3% по ширине фронта ударной волны. Проведено сравнение полученных результатов с существующими расчетными данными. Представленные в данной работе результаты имеют теоретическое значение, а также могут служить в качестве тестового расчета, поскольку они получены с использованием точного уравнения Больцмана.
Ключевые слова: динамика разреженных газов, бинарные газовые смеси, кинетическое уравнение Больцмана, проекционный метод, численное моделирование, структура ударной волны.
Computation of a shock wave structure in a gas mixture based on the Boltzmann equation with accuracy control
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1107-1123In this paper, the structure of a shock wave in a binary gas mixture is studied on the basis of direct solution of the Boltzmann kinetic equation. The conservative projection method is used to evaluate the collision integral in the kinetic equation. The applied evaluation formulas and numerical methods are described in detail. The model of hard spheres is used as an interaction potential of molecules. Numerical simulation is performed using the developed simulation environment software, which makes it possible to study both steady and non-steady flows of gas mixtures in various flow regimes and for an arbitrary geometry of the problem. Modeling is performed on a cluster architecture. Due to the use of code parallelization technologies, a significant acceleration of computations is achieved. With a fixed accuracy controlled by the simulation parameters, the distributions of macroscopic characteristics of the mixture components through the shock wave front were obtained. Computations were conducted for various ratios of molecular masses and Mach numbers. The total accuracy of at least 1% for the local values of molecular density and temperature and 3% for the shock front width was achieved. The obtained results were compared with existing computation data. The results presented in this paper are of theoretical significance, and can serve as a test computation, since they are obtained using the exact Boltzmann equation.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"