All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Квазиклассическое приближение для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 205-219Для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова в классе траекторно-сосредоточенных функций построены квазиклассические асимптотики с точностью $O(D^{N/2})$, $N\geqslant3$. С помощью операторов симметрии получен счетный набор асимптотических решений исходного уравнения с точностью $O(D^{3/2})$. В явном виде построены асимптотические решения двумерного уравнения Фишера–Колмогорова–Петровского–Пискунова.
Ключевые слова: нелокальное уравнение Фишера–Колмогорова–Петровского–Пискунова, асимптотическое решение, система Эйнштейна–Эренфеста.
Semiclassical approximation for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 205-219Views (last year): 4.Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation are found in explicit
form. -
Асимптотические решения нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова на больших временах
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 543-558Для одномерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова построены асимптотические решения, позволяющие описывать квазистационарные структуры. Построены асимптотические решения динамической системы Эйнштейна–Эренфеста для двумерного уравнения Фишера–Колмогорова–Петровского–Пискунова. Эти решения описывают свойства двумерных структур, локализованных на одномерных многообразиях.
Ключевые слова: нелокальное уравнение Фишера–Колмогорова–Петровского–Пискунова, асимптотическое решение, образование структур, система Эйнштейна–Эренфеста.
Large-time asymptotic solutions of the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 543-558Views (last year): 1. Citations: 3 (RSCI).Asymptotic solutions are constructed for the 1D nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical Einstein–Ehrenfest system for the 2D Fisher–Kolmogorov–Petrovskii–Piskunov equation are found. The solutions describe properties of 2D patterns localized on 1D manifolds.
-
Влияние конвекции на двумерную динамику в нелокальной реакционно-диффузионной модели
Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 55-61Численными методами исследовано формирование пространственных структур, описываемых скалярным уравнением Фишера–Колмогорова–Петровского–Пискунова с нелокальными конкурентными потерями и конвекцией, линейно зависящей от пространственных переменных. Показано, что при соответствующем выборе значений параметров уравнения, начальная функция, локализованная в окрестности точки, трансформируется в функцию, локализованную в окрестности кольца с симметрично расположенными на нем локальными максимумами. Радиус кольца и число максимумов зависят от конвекции.
Ключевые слова: реакция-диффузия, конвекция, нелокальные конкурентные потери, уравнение Фишера–Колмогорова–Петровского–Пискунова.
Convection effect on two-dimensional dynamics in the nonlocal reaction-diffusion model
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 55-61Views (last year): 3. Citations: 1 (RSCI).Pattern formation described by the scalar Fisher–Kolmogorov–Petrovsky–Piscounov equation with nonlocal competition loses and convection linear on coordinates is considered numerically. Initial function localized around a point is shown to transform in a function localized around a ring with symmetrically sited local maxima. The ring radius and number of maxima depend on convection.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"