Результаты поиска по 'reaction-diffusion':
Найдено статей: 14
  1. Malinetsky G.G., Faller D.S.
    Transition to chaos in the «reactiondiffusion» systems. The simplest models
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 3-12

    The article discusses the emergence of chaotic attractors in the system of three ordinary differential equations arising in the theory of «reaction-diffusion» systems. The dynamics of the corresponding one- and two-dimensional maps and Lyapunov exponents of such attractors are studied. It is shown that the transition to chaos is in accordance with a non-traditional scenario of repeated birth and disappearance of chaotic regimes, which had been previously studied for one-dimensional maps with a sharp apex and a quadratic minimum. Some characteristic features of the system — zones of bistability and hyperbolicity, the crisis of chaotic attractors — are studied by means of numerical analysis.

    Views (last year): 6. Citations: 1 (RSCI).
  2. In the last decades, universal scenarios of the transition to chaos in dynamic systems have been well studied. The scenario of the transition to chaos is defined as a sequence of bifurcations that occur in the system under the variation one of the governing parameters and lead to a qualitative change in dynamics, starting from the regular mode and ending with chaotic behavior. Typical scenarios include a cascade of period doubling bifurcations (Feigenbaum scenario), the breakup of a low-dimensional torus (Ruelle–Takens scenario), and the transition to chaos through the intermittency (Pomeau–Manneville scenario). In more complicated spatially distributed dynamic systems, the complexity of dynamic behavior growing with a parameter change is closely intertwined with the formation of spatial structures. However, the question of whether the spatial and temporal axes could completely exchange roles in some scenario still remains open. In this paper, for the first time, we propose a mathematical model of convection–diffusionreaction, in which a spatial transition to chaos through the breakup of the quasi–periodic regime is realized in the framework of the Ruelle–Takens scenario. The physical system under consideration consists of two aqueous solutions of acid (A) and base (B), initially separated in space and placed in a vertically oriented Hele–Shaw cell subject to the gravity field. When the solutions are brought into contact, the frontal neutralization reaction of the second order A + B $\to$ C begins, which is accompanied by the production of salt (C). The process is characterized by a strong dependence of the diffusion coefficients of the reagents on their concentration, which leads to the appearance of two local zones of reduced density, in which chemoconvective fluid motions develop independently. Although the layers, in which convection develops, all the time remain separated by the interlayer of motionless fluid, they can influence each other via a diffusion of reagents through this interlayer. The emerging chemoconvective structure is the modulated standing wave that gradually breaks down over time, repeating the sequence of the bifurcation chain of the Ruelle–Takens scenario. We show that during the evolution of the system one of the spatial axes, directed along the reaction front, plays the role of time, and time itself starts to play the role of a control parameter.

  3. Borina M.Y., Polezhaev A.A.
    Diffusion instability in a threevariable reactiondiffusion model
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 135-146

    Investigation of occurrence of diffusion instability in a set of three reactiondiffusion equations is carried out. In the general case the condition for both Turing and wave instabilities are obtained. Qualitative properties of the system, in which the bifurcation of each of the two types can take place, are clarified. In numerical experiments it is shown that if the corresponding conditions are met in the nonlinear model, spatiotemporal patterns are formed, which are predicted by linear analysis.

    Views (last year): 1. Citations: 7 (RSCI).
  4. Borina M.Y., Polezhaev A.A.
    On the mechanisms for formation of segmented waves in active media
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 533-542

    We suggest three possible mechanisms for formation of segmented waves and spirals. These structures were observed in the Belousov–Zhabotinsky reaction dispersed in a water-in-oil aerosol OT microemulsion. The first mechanism is caused by interaction of two coupled subsystems, one of which is excitable, and the other one has Turing instability depending on the parameters. It is shown that, segmented spirals evolve from ordinary smooth spirals as a result of the transverse Turing instability. We demonstrate that depending on the properties of subsystems different segmented spirals emerge. For the second mechanism we suggest "splitting" of the traveling wave in the vicinity of the bifurcation point of codimension-2, where the boundaries of the Turing and wave instabilities intersect. Finally we show that the segmented waves can emerge in some simple two-component reaction-diffusion models having more than one steady state, particularly in a FitzHugh–Nagumo model.

    Citations: 3 (RSCI).
  5. Borisov A.V., Trifonov A.Y., Shapovalov A.V.
    Numerical modeling of population 2D-dynamics with nonlocal interaction
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 33-40

    Numerical solutions for the two-dimensional reaction-diffusion equation with nonlocal nonlinearity are obtained. The solutions reveal formation of dissipative structures. Structures arising from initial distributions with one and several centers of localization are considered. Formation of extending circular structures is shown. Peculiarities of formation and interaction of extending circular structures depending on  nonlocal interaction are considered.

    Views (last year): 3. Citations: 5 (RSCI).
  6. Lobanov A.I.
    Model of cellular automata
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 273-293

    An introduction to the models of cellular automata is given. The three automata described on the plane are: Viner-Rosenbluth cellular automata, the game of Life and Kohomoto-Oono automata for modelling «reaction-diffusion» systems. There is built the generalization of cellular automata of the game of Life to arbitrary dimension of space and the generalization of Kohomoto-Oono automata in 3D.

    Views (last year): 64. Citations: 21 (RSCI).
  7. Shultz D.S., Krainov A.Y.
    Mathematical modeling of SHS process in heterogeneous reactive powder mixtures
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 147-153

    In this paper we present a mathematical model and numerical results on a propagation of the combustion front of the SHS compound, where the rate of chemical reaction at each point of the SHS sample is determined by solving the problem of diffusion and chemical reaction in the reaction cell. We obtained the dependence of the combustion front on the size of the average element of a heterogeneous structure with different values of the diffusion intensity. These dependences agree qualitatively with the experimental data. We studied the effect of activation energy for diffusion on the propagation velocity of combustion front. It is revealed the propagation of the combustion front transforms to an oscillatory regime at increase in activation energy of diffusion. A transition boundary of the combustion front propagation from the steady-state regime to the oscillatory one is defined.

    Views (last year): 2. Citations: 5 (RSCI).
  8. Borisov A.V., Trifonov A.Y., Shapovalov A.V.
    Convection effect on two-dimensional dynamics in the nonlocal reaction-diffusion model
    Computer Research and Modeling, 2011, v. 3, no. 1, pp. 55-61

    Pattern formation described by the scalar Fisher–Kolmogorov–Petrovsky–Piscounov equation with nonlocal competition loses and convection linear on coordinates is considered numerically. Initial function localized around a point is shown to transform in a function localized around a ring with symmetrically sited local maxima. The ring radius and number of maxima depend on convection.

    Views (last year): 3. Citations: 1 (RSCI).
  9. Kurushina S.E., Shapovalova E.A.
    Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607

    We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.

    We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.

    In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.

    Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.

    Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.

    Views (last year): 7.
  10. Andreeva A.A., Nikolaev A.V., Lobanov A.I.
    Analysis of point model of fibrin polymerization
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 247-258

    Functional modeling of blood clotting and fibrin-polymer mesh formation is of a significant value for medical and biophysics applications. Despite the fact of some discrepancies present in simplified functional models their results are of the great interest for the experimental science as a handy tool of the analysis for research planning, data processing and verification. Under conditions of the good correspondence to the experiment functional models can be used as an element of the medical treatment methods and biophysical technologies. The aim of the paper in hand is a modeling of a point system of the fibrin-polymer formation as a multistage polymerization process with a sol-gel transition at the final stage. Complex-value Rosenbroke method of second order (CROS) used for computational experiments. The results of computational experiments are presented and discussed. It was shown that in the physiological range of the model coefficients there is a lag period of approximately 20 seconds between initiation of the reaction and fibrin gel appearance which fits well experimental observations of fibrin polymerization dynamics. The possibility of a number of the consequent $(n = 1–3)$ sol-gel transitions demonstrated as well. Such a specific behavior is a consequence of multistage nature of fibrin polymerization process. At the final stage the solution of fibrin oligomers of length 10 can reach a semidilute state, leading to an extremely fast gel formation controlled by oligomers’ rotational diffusion. Otherwise, if the semidilute state is not reached the gel formation is controlled by significantly slower process of translational diffusion. Such a duality in the sol-gel transition led authors to necessity of introduction of a switch-function in an equation for fibrin-polymer formation kinetics. Consequent polymerization events can correspond to experimental systems where fibrin mesh formed gets withdrawn from the volume by some physical process like precipitation. The sensitivity analysis of presented system shows that dependence on the first stage polymerization reaction constant is non-trivial.

    Views (last year): 8.
Pages: next

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the List of Russian peer-reviewed journals publishing the main research results of PhD and doctoral dissertations.

International Interdisciplinary Conference "Mathematics. Computing. Education"

The journal is included in the RSCI

Indexed in Scopus