Результаты поиска по 'нестационарная задача':
Найдено статей: 53
  1. Ха Д.Т., Цибулин В.Г.
    Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1451-1466

    Для системы автономных дифференциальных уравнений изучаются динамические сценарии, приводящие к мультистабильности в виде континуальных семейств устойчивых решений. Используется подход на основе определения косимметрий задачи, вычисления стационарных решений и численно-аналитического исследования их устойчивости. Анализ проводится для уравнений типа Лотки – Вольтерры, описывающих взаимодействие двух хищников, питающихся двумя родственными видами жертв. Для системы обыкновенных дифференциальных уравнений 4-го порядка с 11 вещественными параметрами проведено численно-аналитическое исследование возможных сценариев взаимодействия. Аналитически найдены соотношения между управляющими параметрами, при которых реализуется линейная по переменным задачи косимметрия и возникают семейства стационарных решений (равновесий). Установлен случай мультикосимметрии и представлены явные формулы для двупараметрического семейства равновесий. Анализ устойчивости этих решений позволил обнаружить разделение семейства на области устойчивых и неустойчивых равновесий. В вычислительном эксперименте определены ответвившиеся от неустойчивых стационарных решений предельные циклы и вычислены их мультипликаторы, отвечающие мультистабильности. Представлены примеры сосуществования семейств устойчивых стационарных и нестационарных решений. Проведен анализ для функций роста логистического и «гиперболического» типов. В зависимости от параметров могут получаться сценарии, когда в фазовом пространстве реализуются только стационарные решения (сосуществование жертв без хищников и смешанные комбинации), а также семейства предельных циклов. Рассмотренные в работе сценарии мультистабильности позволяют анализировать ситуации, возникающие при наличии нескольких родственных видов на ареале. Эти результаты являются основой для последующего анализа при отклонении параметров от косимметричных соотношений.

    Ha D.T., Tsybulin V.G.
    Multi-stable scenarios for differential equations describing the dynamics of a predators and preys system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1451-1466

    Dynamic scenarios leading to multistability in the form of continuous families of stable solutions are studied for a system of autonomous differential equations. The approach is based on determining the cosymmetries of the problem, calculating stationary solutions, and numerically-analytically studying their stability. The analysis is carried out for equations of the Lotka –Volterra type, describing the interaction of two predators feeding on two related prey species. For a system of ordinary differential equations of the 4th order with 11 real parameters, a numerical-analytical study of possible interaction scenarios was carried out. Relationships are found analytically between the control parameters under which the cosymmetry linear in the variables of the problem is realized and families of stationary solutions (equilibria) arise. The case of multicosymmetry is established and explicit formulas for a two-parameter family of equilibria are presented. The analysis of the stability of these solutions made it possible to reveal the division of the family into regions of stable and unstable equilibria. In a computational experiment, the limit cycles branching off from unstable stationary solutions are determined and their multipliers corresponding to multistability are calculated. Examples of the coexistence of families of stable stationary and non-stationary solutions are presented. The analysis is carried out for the growth functions of logistic and “hyperbolic” types. Depending on the parameters, scenarios can be obtained when only stationary solutions (coexistence of prey without predators and mixed combinations), as well as families of limit cycles, are realized in the phase space. The multistability scenarios considered in the work allow one to analyze the situations that arise in the presence of several related species in the range. These results are the basis for subsequent analysis when the parameters deviate from cosymmetric relationships.

  2. В работе приводятся результаты применения схемы очень высокой точности и разрешающей способности для получения численных решений уравнений Навье – Стокса сжимаемого газа, описывающих возникновение и развитие неустойчивости двумерного ламинарного пограничного слоя на плоской пластине. Особенностью проведенных исследований является отсутствие обычно используемых искусственных возбудителей неустойчивости при реализации прямого численного моделирования. Используемая мультиоператорная схема позволила наблюдать тонкие эффекты рождения неустойчивых мод и сложный характер их развития, вызванные предположительно ее малыми погрешностями аппроксимации. Приводится краткое описание конструкции схемы и ее основных свойств. Описываются постановка задачи и способ получения начальных данных, позволяющий достаточно быстро наблюдать установившийся нестационарный режим. Приводится методика, позволяющая обнаруживать колебания скорости с амплитудами, на много порядков меньшими ее средних значений. Представлена зависящая от времени картина возникновения пакетов волн Толмина – Шлихтинга с меняющейся интенсивностью в окрестности передней кромки пластины и их распространения вниз по потоку. Представленные амплитудные спектры с расширяющимися пиковыми значениями в нижних по течению областях указывают на возбуждение новых неустойчивых мод, отличных от возникающих в окрестности передней кромки. Анализ эволюции волн неустойчивости во времени и пространстве показал согласие с основными выводами линейной теории. Полученные численные решения, по-видимому, впервые описывают полный сценарий возможного развития неустойчивости Толмина – Шлихтинга, которая часто играет существенную роль на начальной стадии ламинарно-турбулентного перехода. Они открывают возможности полномасштабного численного моделирования этого крайне важного для практики процесса при аналогичном изучении пространственного пограничного слоя.

    The paper presents the results of applying a scheme of very high accuracy and resolution to obtain numerical solutions of the Navier – Stokes equations of a compressible gas describing the occurrence and development of instability of a two-dimensional laminar boundary layer on a flat plate. The peculiarity of the conducted studies is the absence of commonly used artificial exciters of instability in the implementation of direct numerical modeling. The multioperator scheme used made it possible to observe the subtle effects of the birth of unstable modes and the complex nature of their development caused presumably by its small approximation errors. A brief description of the scheme design and its main properties is given. The formulation of the problem and the method of obtaining initial data are described, which makes it possible to observe the established non-stationary regime fairly quickly. A technique is given that allows detecting flow fluctuations with amplitudes many orders of magnitude smaller than its average values. A time-dependent picture of the appearance of packets of Tollmien – Schlichting waves with varying intensity in the vicinity of the leading edge of the plate and their downstream propagation is presented. The presented amplitude spectra with expanding peak values in the downstream regions indicate the excitation of new unstable modes other than those occurring in the vicinity of the leading edge. The analysis of the evolution of instability waves in time and space showed agreement with the main conclusions of the linear theory. The numerical solutions obtained seem to describe for the first time the complete scenario of the possible development of Tollmien – Schlichting instability, which often plays an essential role at the initial stage of the laminar-turbulent transition. They open up the possibilities of full-scale numerical modeling of this process, which is extremely important for practice, with a similar study of the spatial boundary layer.

  3. Дегтярев А.Б., Ежакова Т.Р., Храмушин В.Н.
    Алгоритмическое построение явных численных схем и визуализация объектов и процессов в вычислительном эксперименте в гидромеханике
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 767-774

    В работе рассматриваются проектные и поверочные этапы, в разработке сложных вычислительных алгоритмов для создания прямых вычислительных экспериментов в гидромеханике. В моделировании физических полей и нестационарных процессов механики сплошных сред желательно опираться на строгие правила конструирования числовых объектов и связанных с ними вычислительных алгоритмов. Синтез адаптивных числовых объектов и эффективных арифметико-логических операций может послужить оптимизации всей вычислительной задачи, при условии строго следования и соблюдения исходных законов гидромеханики. Возможность использования троичной логики позволяет разрешить некоторые противоречия функционального и декларативного программирования в реализации чисто прикладных задач механики. Аналогичные проектные решения приводят к новым численным схемам тензорной математики, которые позволяют оптимизировать эффективность и обосновывать корректность результатов моделирования. Наиболее важным следствием является возможность использования интерактивных графических методов для визуализации промежуточных результатов моделирования, а также для управляемого воздействия на ход вычислительного эксперимента под контролем инженеров аэрогидромехаников–исследователей.

    Degtyarev A.B., Yezhakova T.R., Khramushin V.N.
    Algorithmic construction of explicit numerical schemes and visualization of objects and processes in the computational experiment in fluid mechanics
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 767-774

    The paper discusses the design and verification stages in the development of complex numerical algorithms to create direct computational experiments in fluid mechanics. The modeling of physical fields and nonstationary processes of continuum mechanics, it is desirable to rely on strict rules of construction the numerical objects and related computational algorithms. Synthesis of adaptive the numerical objects and effective arithmetic- logic operations can serve to optimize the whole computing tasks, provided strict following and compliance with the original of the laws of fluid mechanics. The possibility of using ternary logic enables to resolve some contradictions of functional and declarative programming in the implementation of purely applied problems of mechanics. Similar design decisions lead to new numerical schemes tensor mathematics to help optimize effectiveness and validate correctness the simulation results. The most important consequence is the possibility of using interactive graphical techniques for the visualization of intermediate results of modeling, as well as managed to influence the course of computing experiment under the supervision of engineers aerohydrodynamics– researchers.

    Views (last year): 1.
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"