Результаты поиска по 'объект с системой управления':
Найдено статей: 28
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1099-1101
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 5-10
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1037-1040
  4. Чуканов С.Н., Першина Е.Л.
    Формирование оптимального управления нелинейным динамическим объектом на основе модели Такаги–Сугено
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 51-59

    В работе рассмотрен алгоритм нечеткой системы управления существенно нелинейным динамическим объектом. Для решения нелинейной задачи оптимального управления предлагается использовать линейно-квадратичное регулирование (LQR — linear quadratic regulator) с моделью Такаги–Сугено (Takagi–Sugeno). Алгоритм может быть использован для проектирования систем оптимального управления детерминированными нелинейными объектами. Предложено использование алгоритма функционирования оптимальной системы управления для управления вращательным движением летательного аппарата.

    Chukanov S.N., Pershina E.L.
    Formation of optimal control of nonlinear dynamic object based on Takagi–Sugeno model
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 51-59

    The algorithm of fuzzy control system essentially nonlinear dynamic object is considered in this article. For solving nonlinear optimal control problem is proposed to use the method of linear quadratic regulation (LQR) with fuzzy Takagi–Sugeno model. The algorithm can be used for the design of deterministic optimal control of nonlinear objects. The algorithm of optimal control for controlling the rotational motion of a space vehicle is proposed.

    Views (last year): 2.
  5. Чуканов С.Н.
    Моделирование структуры сложной системы на основе оценивания меры взаимодействия подсистем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 707-719

    В работе рассматривается использование определения меры взаимодействия между каналами при выборе конфигурации структуры системы управления сложными динамическими объектами. Приведены основные методы определения меры взаимодействия подсистем сложных систем управления на основе методов RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix). Задача проектирования структуры управления традиционно делится на выбор каналов ввода-вывода и выбор конфигурации управления. При выборе конфигурации управления простые конфигурации более предпочтительны, так как просты при проектировании, обслуживании и более устойчивы к сбоям в работе. Однако сложные конфигурации обеспечивают создание системы управления с более высокой эффективностью. Процессы в больших динамических объектах характеризуются высокой степенью взаимодействия между переменными процесса. Выбор структуры управления заключается в определении того, какие динамические соединения следует использовать для разработки системы управления. Когда структура выбрана, соединения могут быть использованы для конфигурирования системы управления. Для больших систем предлагается для выбора структуры управления предварительно группировать компоненты векторов входных и выходных сигналов исполнительных органов и чувствительных элементов в наборы, в которых количество переменных существенно уменьшается. Приводится количественная оценка децентрализации системы управления на основе минимизации суммы недиагональных элементов матрицы PM. Приведен пример оценки меры взаимодействия компонент сильно связанных подсистем и меры взаимодействия компонент слабосвязанных подсистем. Дана количественная оценка последствий пренебрежения взаимодействием компонент слабосвязанных подсистем. Рассмотрено построение взвешенного графа для визуализации взаимодействия подсистем сложной системы. В работе предложен метод формирования грамиана управляемости вектором выходных сигналов, инвариантный к преобразованиям вектора состояния. Приведен пример декомпозиции системы стабилизации компонент вектора угловой скорости летательного аппарата. Оценивание мер взаимного влияния процессов в каналах систем управления позволяет повысить надежность функционирования систем при учете использования аналитической избыточности информации с различных приборов, что позволяет снизить массовые и габаритные характеристики систем, а также потребление энергии. Методы оценивания меры взаимодействия процессов в подсистемах систем управления могут быть использованы при проектировании сложных систем, например систем управления движением, систем ориентации и стабилизации летательных аппаратов.

    Chukanov S.N.
    Modeling the structure of a complex system based on estimation of the measure of interaction of subsystems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 707-719

    The using of determining the measure of interaction between channels when choosing the configuration structure of a control system for complex dynamic objects is considered in the work. The main methods for determining the measure of interaction between subsystems of complex control systems based on the methods RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix) are presented. When choosing a control configuration, simple configurations are preferable, as they are simple in design, maintenance and more resistant to failures. However, complex configurations provide higher performance control systems. Processes in large dynamic objects are characterized by a high degree of interaction between process variables. For the design of the control structure interaction measures are used, namely, the selection of the control structure and the decision on the configuration of the controller. The choice of control structure is to determine which dynamic connections should be used to design the controller. When a structure is selected, connections can be used to configure the controller. For large systems, it is proposed to pre-group the components of the vectors of input and output signals of the actuators and sensitive elements into sets in which the number of variables decreases significantly in order to select a control structure. A quantitative estimation of the decentralization of the control system based on minimizing the sum of the off-diagonal elements of the PM matrix is given. An example of estimation the measure of interaction between components of strong coupled subsystems and the measure of interaction between components of weak coupled subsystems is given. A quantitative estimation is given of neglecting the interaction of components of weak coupled subsystems. The construction of a weighted graph for visualizing the interaction of the subsystems of a complex system is considered. A method for the formation of the controllability gramian on the vector of output signals that is invariant to state vector transformations is proposed in the paper. An example of the decomposition of the stabilization system of the components of the flying vehicle angular velocity vector is given. The estimation of measures of the mutual influence of processes in the channels of control systems makes it possible to increase the reliability of the systems when accounting for the use of analytical redundancy of information from various devices, which reduces the mass and energy consumption. Methods for assessing measures of the interaction of processes in subsystems of control systems can be used in the design of complex systems, for example, motion control systems, orientation and stabilization systems of vehicles.

  6. Власов А.А., Пильгейкина И.А., Скорикова И.А.
    Методика формирования многопрограммного управления изолированным перекрестком
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 295-303

    Наиболее простым и востребованным практикой методом управления светофорной сигнализацией является предрассчитанное регулирование, когда параметры работы светофорного объекта рассчитываются заранее и затем активируются согласно расписанию. В работе предложена методика формирования сигнального плана, позволяющая рассчитать программы регулирования и установить период их активности. Подготовка исходных данных для проведения расчета включает формирование временного ряда суточной интенсивности движения с интервалом 15 минут. При проведении полевых обследований возможно отсутствие части измерений интенсивности движения. Для восполнения недостающих значений предложено использование кубической сплайн-интерполяции временного ряда. Следующем шагом методики является расчет суточного набора сигнальных планов. В работе приведены зависимости, позволяющие рассчитать оптимальную длительность цикла регулирования и разрешающих движение фаз и установить период их активности. Существующие системы управления движением имеют ограничения на количество используемых программ регулирования. Для сокращения количества сигнальных планов и определения периода их активности используется кластеризация методом $k$-средних в пространстве длительности транспортных фаз. В новом суточном сигнальном плане длительность фаз определяется координатами полученных центров кластеров, а периоды активности устанавливаются элементами, вошедшими в кластер. Апробация на числовом примере показала, что при количестве кластеров 10 отклонение оптимальной длительности фаз от центров кластеров не превышает 2 с. Для проведения оценки эффективности разработанной методики на примере реального пересечения со светофорным регулированием. На основе натурных обследований схемы движения и транспортного спроса разработана микроскопическая модель для программы SUMO (Simulation of Urban Mobility). Оценка эффективности произведена на основе потерь транспорта, оцениваемых затратами времени на передвижение. Имитационное моделирование многопрограммного управления сигналами светофора показало снижение времени задержки (в сравнении с однопрограммным управлением) на 20 %. Предложенная методика позволяет автоматизировать процесс расчета суточных сигнальных планов и установки времени их активности.

    Vlasov A.A., Pilgeikina I.A., Skorikova I.A.
    Method of forming multiprogram control of an isolated intersection
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 295-303

    The simplest and most desirable method of traffic signal control is precalculated regulation, when the parameters of the traffic light object operation are calculated in advance and activated in accordance to a schedule. This work proposes a method of forming a signal plan that allows one to calculate the control programs and set the period of their activity. Preparation of initial data for the calculation includes the formation of a time series of daily traffic intensity with an interval of 15 minutes. When carrying out field studies, it is possible that part of the traffic intensity measurements is missing. To fill up the missing traffic intensity measurements, the spline interpolation method is used. The next step of the method is to calculate the daily set of signal plans. The work presents the interdependencies, which allow one to calculate the optimal durations of the control cycle and the permitting phase movement and to set the period of their activity. The present movement control systems have a limit on the number of control programs. To reduce the signal plans' number and to determine their activity period, the clusterization using the $k$-means method in the transport phase space is introduced In the new daily signal plan, the duration of the phases is determined by the coordinates of the received cluster centers, and the activity periods are set by the elements included in the cluster. Testing on a numerical illustration showed that, when the number of clusters is 10, the deviation of the optimal phase duration from the cluster centers does not exceed 2 seconds. To evaluate the effectiveness of the developed methodology, a real intersection with traffic light regulation was considered as an example. Based on field studies of traffic patterns and traffic demand, a microscopic model for the SUMO (Simulation of Urban Mobility) program was developed. The efficiency assessment is based on the transport losses estimated by the time spent on movement. Simulation modeling of the multiprogram control of traffic lights showed a 20% reduction in the delay time at the traffic light object in comparison with the single-program control. The proposed method allows automation of the process of calculating daily signal plans and setting the time of their activity.

  7. Чуканов С.Н.
    Сравнение сложных динамических систем на основе топологического анализа данных
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 513-525

    В работе рассматривается возможность сравнения и классификации динамических систем на основе топологического анализа данных. Определение мер взаимодействия между каналами динамических систем на основе методов HIIA (Hankel Interaction Index Array) и PM (Participation Matrix) позволяет построить графы HIIA и PM и их матрицы смежности. Для любой линейной динамической системы может быть построен аппроксимирующий ориентированный граф, вершины которого соответствуют компонентам вектора состояния динамической системы, а дуги — мерам взаимного влияния компонент вектора состояния. Построение меры расстояния (близости) между графами различных динамических систем имеет важное значение, например для идентификации штатного функционирования или отказов динамической системы или системы управления. Для сравнения и классификации динамических систем в работе предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам, с весами ребер, соответствующими мерам взаимодействия между каналами динамической системы. На основе методов HIIA и PM определяются матрицы мер взаимодействия между каналами динамических систем. В работе приведены примеры формирования взвешенных ориентированных графов для различных динамических систем и оценивания расстояния между этими системами на основе топологического анализа данных. Приведен пример формирования взвешенного ориентированного графа для динамической системы, соответствующей системе управления компонентами вектора угловой скорости летательного аппарата, который рассматривается как твердое тело с главными моментами инерции. Метод топологического анализа данных, используемый в настоящей работе для оценки расстояния между структурами динамических систем, основан на формировании персистентных баркодов и функций персистентного ландшафта. Методы сравнения динамических систем на основе топологического анализа данных могут быть использованы при классификации динамических систем и систем управления. Применение традиционной алгебраической топологии для анализа объектов не позволяет получить достаточное количество информации из-за уменьшения размерности данных (в связи потерей геометрической информации). Методы топологического анализа данных обеспечивают баланс между уменьшением размерности данных и характеристикой внутренней структуры объекта. В настоящей работе используются методы топологического анализа данных, основанные на применении фильтраций Vietoris-Rips и Dowker для присвоения каждому топологическому признаку геометрической размерности. Для отображения персистентных диаграмм метода топологического анализа данных в гильбертово пространство и последующей количественной оценки сравнения динамических систем используются функции персистентного ландшафта. На основе построения функций персистентного ландшафта предлагаются сравнение графов динамических систем и нахождение расстояний между динамическими системами. Для этой цели предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам. Приведены примеры нахождения расстояния между объектами (динамическими системами).

    Chukanov S.N.
    Comparison of complex dynamical systems based on topological data analysis
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 513-525

    The paper considers the possibility of comparing and classifying dynamical systems based on topological data analysis. Determining the measures of interaction between the channels of dynamic systems based on the HIIA (Hankel Interaction Index Array) and PM (Participation Matrix) methods allows you to build HIIA and PM graphs and their adjacency matrices. For any linear dynamic system, an approximating directed graph can be constructed, the vertices of which correspond to the components of the state vector of the dynamic system, and the arcs correspond to the measures of mutual influence of the components of the state vector. Building a measure of distance (proximity) between graphs of different dynamic systems is important, for example, for identifying normal operation or failures of a dynamic system or a control system. To compare and classify dynamic systems, weighted directed graphs corresponding to dynamic systems are preliminarily formed with edge weights corresponding to the measures of interaction between the channels of the dynamic system. Based on the HIIA and PM methods, matrices of measures of interaction between the channels of dynamic systems are determined. The paper gives examples of the formation of weighted directed graphs for various dynamic systems and estimation of the distance between these systems based on topological data analysis. An example of the formation of a weighted directed graph for a dynamic system corresponding to the control system for the components of the angular velocity vector of an aircraft, which is considered as a rigid body with principal moments of inertia, is given. The method of topological data analysis used in this work to estimate the distance between the structures of dynamic systems is based on the formation of persistent barcodes and persistent landscape functions. Methods for comparing dynamic systems based on topological data analysis can be used in the classification of dynamic systems and control systems. The use of traditional algebraic topology for the analysis of objects does not allow obtaining a sufficient amount of information due to a decrease in the data dimension (due to the loss of geometric information). Methods of topological data analysis provide a balance between reducing the data dimension and characterizing the internal structure of an object. In this paper, topological data analysis methods are used, based on the use of Vietoris-Rips and Dowker filtering to assign a geometric dimension to each topological feature. Persistent landscape functions are used to map the persistent diagrams of the method of topological data analysis into the Hilbert space and then quantify the comparison of dynamic systems. Based on the construction of persistent landscape functions, we propose a comparison of graphs of dynamical systems and finding distances between dynamical systems. For this purpose, weighted directed graphs corresponding to dynamical systems are preliminarily formed. Examples of finding the distance between objects (dynamic systems) are given.

  8. Ушаков А.О., Ганджа Т.В., Дмитриев В.М., Молоков П.Б.
    Компьютерная модель экстракционного реактора идеального смешения в формате метода компонентных цепей с неоднородными векторными связями
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 599-614

    Рассмотрены особенности метода компонентных цепей (МКЦ) при моделировании химико-технологических систем (ХТС) с учетом его практической значимости. Программно-алгоритмической реализацией МКЦ в настоящее время является комплекс программ компьютерного моделирования МАРС (моделирование и автоматический расчет систем). МАРС позволяет осуществлять разработку и анализ компьютерных моделей ХТС с заданными параметрами эксперимента. В ходе настоящей работы осуществлена разработка модели реактора идеального смешения с учетом физико-химических особенностей процесса экстракции урана в присутствии азотной кислоты и трибутилфосфата в среде моделирования МАРС. В качестве результатов представлены кинетические кривые концентрации урана, извлекаемого в органическую фазу. Исследована и подтверждена возможность использования МКЦ для описания и анализа сложных химико-технологических систем ядерно-топливного цикла, в том числе для экстракционных процессов. Использование полученных результатов планируется применять при разработке виртуальной лаборатории, которая будет включать основные аппараты химической промышленности, а также сложные технические управляемые системы (СТУС) на их основе и позволит приобрести широкий спектр профессиональных компетенций по работе с «цифровыми двойниками» реальных объектов управления, в том числе получить первоначальный опыт работы с основными аппаратами ядерной отрасли. Помимо непосредственной прикладной пользы, также предполагается, что успешная реализация отечественного комплекса программ компьютерного моделирования и технологий на основе полученных результатов позволит найти решения к проблемам организации национального технологического суверенитета и импортозамещения.

    Ushakov A.O., Gandzha T.V., Dmitriev V.M., Molokov P.B.
    Computer model of a perfect-mixing extraction reactor in the format of the component circuits method with non-uniform vector connections
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 599-614

    The features of the component circuits method (MCC) in modeling chemical-technological systems (CTS) are considered, taking into account its practical significance. The software and algorithmic implementation of which is currently a set of computer modeling programs MARS (Modeling and Automatic Research of Systems). MARS allows the development and analysis of mathematical models with specified experimental parameters. Research and calculations were carried out using a specialized software and hardware complex MARS, which allows the development of mathematical models with specified experimental parameters. In the course of this work, the model of a perfect-mixing reactor was developed in the MARS modeling environment taking into account the physicochemical features of the uranium extraction process in the presence of nitric acid and tributyl phosphate. As results, the curves of changes of the concentration of uranium extracted into the organic phase are presented. The possibility of using MCC for the description and analysis of CTS, including extraction processes, has been confirmed. The use of the obtained results is planned to be used in the development of a virtual laboratory, which will include the main apparatus of the chemical industry, as well as complex technical controlled systems (CTСS) based on them and will allow one to acquire a wide range of professional competencies in working with “digital twins” of real control objects, including gaining initial experience working with the main equipment of the nuclear industry. In addition to the direct applied benefits, it is also assumed that the successful implementation of the domestic complex of computer modeling programs and technologies based on the obtained results will make it possible to find solutions to the problems of organizing national technological sovereignty and import substitution.

  9. Эффективность производственного процесса непосредственно зависит от качества управления технологией, которая, в свою очередь, опирается на точность и оперативность обработки контрольно- измерительной информации. Разработка математических методов исследования системных связей и закономерностей функционирования и построение математических моделей с учетом структурных особенностей объекта исследований, а также написание программных продуктов для реализации данных методов являются актуальными задачами. Практика показала, что список параметров, имеющих место при исследовании сложного объекта современного производства, варьируется от нескольких десятков до нескольких сот наименований, причем степень воздействия каждого из факторов в начальный момент не ясна. Приступать к работе по непосредственному определению модели в этих условиях нельзя — объем требуемой информации может оказаться слишком велик, причем бóльшая часть работы по сбору этой информации будет проделана впустую из-за того, что степень влияния на параметры оптимизации большинства факторов из первоначального списка окажется пренебрежимо малой. Поэтому необходимым этапом при определении модели сложного объекта является работа по сокращению размерности факторного пространства. Большинство промышленных производств являются групповыми иерархическими процессами массового и крупносерийного производства, характеризующимися сотнями факторов. (Для примера реализации математических методов и апробации построенных моделей в основу были взяты данные Молдавского металлургического завода.) С целью исследования системных связей и закономерностей функционирования таких сложных объектов обычно выбираются несколько информативных параметров и осуществляется их выборочный контроль. В данной статье описывается последовательность приведения исходных показателей технологического процесса выплавки стали к виду, пригодному для построения математической модели с целью прогнозирования, внедрения новых видов стали и создание основы для разработки системы автоматизированного управления качеством продукции. В процессе преобразования выделяются следующие этапы: сбор и анализ исходных данных, построение таблицы слабокоррелированных параметров, сокращение факторного пространства с помощью корреляционных плеяд и метода весовых коэффициентов. Полученные результаты позволяют оптимизировать процесс построения модели многофакторного процесса.

    Efficiency of production directly depends on quality of the management of technology which, in turn, relies on the accuracy and efficiency of the processing of control and measuring information. Development of the mathematical methods of research of the system communications and regularities of functioning and creation of the mathematical models taking into account structural features of object of researches, and also writing of the software products for realization of these methods are an actual task. Practice has shown that the list of parameters that take place in the study of complex object of modern production, ranging from a few dozen to several hundred names, and the degree of influence of each factor in the initial time is not clear. Before working for the direct determination of the model in these circumstances, it is impossible — the amount of the required information may be too great, and most of the work on the collection of this information will be done in vain due to the fact that the degree of influence on the optimization of most factors of the original list would be negligible. Therefore, a necessary step in determining a model of a complex object is to work to reduce the dimension of the factor space. Most industrial plants are hierarchical group processes and mass volume production, characterized by hundreds of factors. (For an example of realization of the mathematical methods and the approbation of the constructed models data of the Moldavian steel works were taken in a basis.) To investigate the systemic linkages and patterns of functioning of such complex objects are usually chosen several informative parameters, and carried out their sampling. In this article the sequence of coercion of the initial indices of the technological process of the smelting of steel to the look suitable for creation of a mathematical model for the purpose of prediction is described. The implementations of new types became also creation of a basis for development of the system of automated management of quality of the production. In the course of weak correlation the following stages are selected: collection and the analysis of the basic data, creation of the table the correlated of the parameters, abbreviation of factor space by means of the correlative pleiads and a method of weight factors. The received results allow to optimize process of creation of the model of multiple-factor process.

    Views (last year): 6. Citations: 1 (RSCI).
  10. Приведены результаты исследований по идентификации каналов управляемого объекта, основанные на постобработке измерений с созданием модели многовходового управляемого объекта и последующем активном вычислительном эксперименте. Построение модели управляемого объекта осуществляется путем аппроксимации его поведения нейросетевой моделью по трендам, полученным в ходе пассивного эксперимента в режиме нормальной эксплуатации. Рекуррентная нейронная сеть, имеющая в своем составе элементы в виде обратных связей, позволяет моделировать поведение динамических объектов. Временны́е задержки входных сигналов и сигналов обратных связей позволяют моделировать поведение инерционных объектов с чистым запаздыванием. Обученная на примерах функционирования объекта с системой управления модель представлена динамической нейронной сетью и моделью регулятора с известной функцией регулирования. Нейросетевая модель эмулирует поведение системы и используется для проведения на ней опытов активного вычислительного эксперимента. Нейросетевая модель позволяет получить отклик управляемого объекта на испытательное воздействие, в том числе и на периодическое. По полученной комплексной частотной характеристике с применением метода наименьших квадратов находят значения параметров передаточной функции каналов объекта. Представлен пример идентификации канала имитационной системы управления. Имитационный объект имеет два входа и один выход и обладает различным транспортным запаздыванием по каналам передачи. Один из входов является управляющим воздействием, второй является контролируемым возмущением. Выходная управляемая величина изменяется в результате управляющего воздействия, вырабатываемого регулятором, работающим по пропорционально-интегральному закону регулирования, на основании отклонения управляемой величины от задания. Найденные параметры передаточных функций каналов имитационного объекта близки к значениям параметров исходного имитационного объекта. Приведенная ошибка реакции на единичное ступенчатое воздействие модели системы управления, построенной по результатам идентификации имитационной системы управления, не превышает 0.08. Рассматриваемые объекты относятся к классу технологических процессов с непрерывным характером производства. Подобные объекты характерны для химической, металлургической, горно-обогатительной, целлюлозно-бумажной и ряда других отраслей промышленности.

    Shumixin A.G., Aleksandrova A.S.
    Identification of a controlled object using frequency responses obtained from a dynamic neural network model of a control system
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 729-740

    We present results of a study aimed at identification of a controlled object’s channels based on postprocessing of measurements with development of a model of a multiple-input controlled object and subsequent active modelling experiment. The controlled object model is developed using approximation of its behavior by a neural network model using trends obtained during a passive experiment in the mode of normal operation. Recurrent neural network containing feedback elements allows to simulate behavior of dynamic objects; input and feedback time delays allow to simulate behavior of inertial objects with pure delay. The model was taught using examples of the object’s operation with a control system and is presented by a dynamic neural network and a model of a regulator with a known regulation function. The neural network model simulates the system’s behavior and is used to conduct active computing experiments. Neural network model allows to obtain the controlled object’s response to an exploratory stimulus, including a periodic one. The obtained complex frequency response is used to evaluate parameters of the object’s transfer system using the least squares method. We present an example of identification of a channel of the simulated control system. The simulated object has two input ports and one output port and varying transport delays in transfer channels. One of the input ports serves as a controlling stimulus, the second is a controlled perturbation. The controlled output value changes as a result of control stimulus produced by the regulator operating according to the proportional-integral regulation law based on deviation of the controlled value from the task. The obtained parameters of the object’s channels’ transfer functions are close to the parameters of the input simulated object. The obtained normalized error of the reaction for a single step-wise stimulus of the control system model developed based on identification of the simulated control system doesn’t exceed 0.08. The considered objects pertain to the class of technological processes with continuous production. Such objects are characteristic of chemical, metallurgic, mine-mill, pulp and paper, and other industries.

    Views (last year): 10.
Pages: previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"