Результаты поиска по 'отказоустойчивость':
Найдено статей: 2
  1. Коганов А.В., Сазонов А.Н.
    Критическая скорость роста вычислительных сетей для обеспечения неограниченной наработки на отказ
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 33-39

    Исследуется отказоустойчивость конечной вычислительной сети с произвольным графом, элементы которой имеют вероятность отказа и вероятность восстановления после отказа. Работа сети происходит по трехэтапным тактам (разрушение-восстановление-функционирование). Предлагается алгоритм наращивания сети в начале каждого такта ее работы. При этом граф увеличенной конфигурации сети формируется путем добавления новых экземпляров исходной сети и соединения их определенным образом с элементами старой конфигурации сети. Доказывается, что при достаточно быстром росте сеть имеет положительную вероятность неограниченной безотказной работы. Параметрическая оценка критической скорости роста сети имеет логарифмический порядок по числу тактов.

    Koganov A.V., Sazonov A.N.
    Critical rate of computing net increase for providing the infinity faultless work
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 33-39

    Fault-tolerance of a finite computing net with arbitrary graph, containing elements with certain probability of fault and restore, is analyzed. Algorithm for net growth at each work cycle is suggested. It is shown that if the rate of net increase is sufficiently big then the probability of infinity faultless work is positive. Estimated critical net increase rate is logarithmic over the number of work cycles.

  2. Гуськов В.П., Гущанский Д.Е., Кулабухова Н.В., Абраамян С.А., Балян С.Г., Дегтярев А.Б., Богданов А.В.
    Интерактивный инструментарий для распределенных телемедицинских систем
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 521-527

    Для жителей удалённых районов часто может составлять проблему прохождение квалифицированного медицинского обследования. Доступный медицинский персонал может отсутствовать или не обладать экспертными знаниями достаточного уровня. Помочь в такой ситуации могут телемедицинские технологии. С одной стороны, такие технологии позволяют врачам высокой квалификации оказывать удалённые консультации, повышая тем самым качество постановки диагноза и составления плана лечения. С другой стороны, средства автоматизированного анализа результатов проведённых исследований, анамнеза и информации об аналогичных случаях помогают облегчить выполнение рутинных действий и оказать медицинскому персоналу поддержу в принятии решений.

    Создание телемедицинской системы для конкретной предметной области — это трудоёмкий процесс. Не достаточно подобать подходящих специалистов и заполнить базу знаний аналитического модуля. Необходимо также организовать всю инфраструктуру системы, удовлетворяя предъявляемые требования по надёжности, отказоустойчивости, защите персональных данных и так далее. Снизить трудоёмкость разработки телемедицинских комплексов может инструментарий, содержащий многократно используемые инфраструктурные элементы, общие для систем такого рода.

    В данной работе описан интерактивный инструментарий для создания распределённых телемедицинских систем. Приводится список требований, предъявляемый к получаемым системам, и архитектурные решения, позволяющие удовлетворить эти требования. В качестве примера применения созданного инструментария описывается кардиологическая телемедицинская система.

    Guskov V.P., Gushchanskiy D.E., Kulabukhova N.V., Abrahamyan S.A., Balyan S.G., Degtyarev A.B., Bogdanov A.V.
    An interactive tool for developing distributed telemedicine systems
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 521-527

    Getting a qualified medical examination can be difficult for people in remote areas because medical staff available can either be inaccessible or it might lack expert knowledge at proper level. Telemedicine technologies can help in such situations. On one hand, such technologies allow highly qualified doctors to consult remotely, thereby increasing the quality of diagnosis and plan treatment. On the other hand, computer-aided analysis of the research results, anamnesis and information on similar cases assist medical staff in their routine activities and decision-making.

    Creating telemedicine system for a particular domain is a laborious process. It’s not sufficient to pick proper medical experts and to fill the knowledge base of the analytical module. It’s also necessary to organize the entire infrastructure of the system to meet the requirements in terms of reliability, fault tolerance, protection of personal data and so on. Tools with reusable infrastructure elements, which are common to such systems, are able to decrease the amount of work needed for the development of telemedicine systems.

    An interactive tool for creating distributed telemedicine systems is described in the article. A list of requirements for the systems is presented; structural solutions for meeting the requirements are suggested. A composition of such elements applicable for distributed systems is described in the article. A cardiac telemedicine system is described as a foundation of the tool

    Views (last year): 3. Citations: 4 (RSCI).

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"