Результаты поиска по 'оценка':
Найдено статей: 270
  1. Проведен априорный анализ аппроксимации уравнений магнитной гидродинамики на нерегулярной четырехугольной сетке. Вычислены значения коэффициентов, определяющих норму невязки для разностных аналогов операторов градиента и дивергенции. Изучено влияние свойств ячеек сетки на невязку. Для численного подтверждения полученных оценок приведены примеры вычислений с заданием одинаковых начальных данных на разных сетках.

    Zavyalova N.A.
    Investigation of approximation order of invariant differential operators on movable irregular quadrangular grid
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 353-364

    The a priori analysis of approximation of magnetohydrodynamic equations on irregular quadrangular analysis was performed. The values of coefficients wich determine the misalignment norm for difference analogs of operators gradient and divergence were calculated. Was studied the influence of properties of grid cells on misalignment. For the numerical confirmation of obtained estimations were cited the examples of calculations with specifying identical initial data on different grids.

    Views (last year): 2.
  2. В работе развивается теория нового, так называемого двухпараметрического подхода к анализу и обработке случайных сигналов. Проведены математическое моделирование и сопоставление результатов решения задачи в условиях статистических моделей Гаусса и Райса. Дается обоснование применимости статистической модели Райса в условиях анализа огибающей измеряемого сигнала в задачах обработки данных и изображений. Развит и теоретически обоснован метод решения задачи шумоподавления и восстановления райсовского сигнала посредством одновременного вычисления двух статистических параметров — величины математического ожидания исходного сигнала и дисперсии шума — на основе принципа максимума правдоподобия. Проанализированы особенности функции правдоподобия для распределения Райса и вытекающие из них возможности оценки параметров сигнала и шума.

    The paper develops a theory of a new so-called two-parametric approach to the random signals' analysis and processing. A mathematical simulation and the task solutions’ comparison have been implemented for the Gauss and Rice statistical models. The applicability of the Rice statistical model is substantiated for the tasks of data and images processing when the signal’s envelope is being analyzed. A technique is developed and theoretically substantiated for solving the task of the noise suppression and initial image reconstruction by means of joint calculation of both statistical parameters — an initial signal’s mean value and noise dispersion — based on the maximum likelihood method within the Rice distribution. The peculiarities of this distribution’s likelihood function and the following from them possibilities of the signal and noise estimation have been analyzed.

    Views (last year): 2. Citations: 4 (RSCI).
  3. Анисимова Э.С.
    Идентификация онлайн-подписи с помощью оконного преобразования Фурье и радиального базиса
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 357-364

    В данной работе описан метод идентификации онлайн-подписи с использованием оконного преобразования Фурье и вейвлет-преобразования с радиальным базисом специального вида. При идентификации используются динамические характеристики подписи. Приведены оценки достоверности предложенной процедуры.

    Anisimova E.S.
    On-line signature identification using a short-time Fourier transform and the radial basis
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 357-364

    This paper describes a method of on-line signature identification using the short-time Fourier transform and wavelet transform with radial basis of a special kind. In carrying out the identification, we use dynamic properties signature. We adduce the assessment of the reliability of the proposed procedure.

    Views (last year): 4. Citations: 3 (RSCI).
  4. Лопато А.И., Уткин П.С.
    Математическое моделирование пульсирующей волны детонации с использованием ENO-схем различных порядков аппроксимации
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 643-653

    Представлены результаты численных исследований распространения пульсирующей волны детонации с использованием ENO-схем с порядками аппроксимации с первого по четвертый включительно. Результаты, полученные с использованием схем различного порядка аппроксимации, показывают, что характер распространения детонационной волны в ацетилено-воздушной смеси как качественно, так и количественно соответствует аналитическим оценкам. Для водородно-воздушной смеси ни для какой из рассмотренных схем не удалось получить устойчивое распространение волны. Наблюдается переход от регулярного распространения к маргинальному с последующим затуханием волны детонации.

    Lopato A.I., Utkin P.S.
    Mathematical modeling of pulsating detonation wave using ENO-schemes of different approximation orders
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 643-653

    The results of the numerical investigations of pulsating detonation wave propagation using the ENO-schemes with the approximation orders from the first to the fourth inclusively are presented. The results obtained with the use of the schemes of different approximation orders demonstrate that the pattern of detonation wave propagation in acetylene-air mixture corresponds to the analytical estimates both qualitatively and quantitatively. For the hydrogen-air mixture none of the schemes concerned provides the stable detonation wave propagation. The transition from the regular mode to the marginal one with the subsequent detonation breakup is observed.

    Views (last year): 4. Citations: 5 (RSCI).
  5. В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.

    The mathematical model of the magnetic memory cell MRAM with the in-plane anisotropy axis parallel to the edge of a free ferromagnetic layer (longitudinal anisotropy) has been constructed using approximation of uniform magnetization. The model is based on the Landau–Lifshits–Gilbert equation with the injection-current term in the Sloncžewski–Berger form. The set of ordinary differential equations for magnetization dynamics in a three-layered Co/Cu/Cu valve under the control of external magnetic field and spin-polarized current has been derived in the normal coordinate form. It was shown that the set of equations has two main stationary points on the anisotropy axis at any values of field and current. The stationary analysis of them has been performed. The algebraic equations for determination of additional stationary points have been derived. It has been shown that, depending on the field and current magnitude, the set of equations can have altogether two, four, or six stationary points symmetric in pairs relatively the anisotropy axis. The bifurcation diagrams for all the points have been constructed. The classification of the corresponding phase portraits has been performed. The typical trajectories were calculated numerically using Runge–Kutta method. The regions, where stable and unstable limit cycles exist, have been determined. It was found that the unstable limit cycles exist around the main stable equilibrium point on the axis that coincides with the anisotropy one, whereas the stable cycles surround the unstable additional points of equilibrium. The area of their existence was determined numerically. The new types of dynamics, such as accidental switching and non-complete switching, have been found. The threshold values of switching current and field have been obtained analytically. The estimations of switching times have been performed numerically.

    Views (last year): 2. Citations: 6 (RSCI).
  6. Фомин А.А., Фомина Л.Н.
    О сходимости неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 857-880

    Работа посвящена теоретическому обоснованию неявного итерационного полинейного рекуррентного метода решения систем разностных уравнений, которые возникают при аппроксимации двумерных эллиптических дифференциальных уравнений на регулярной сетке. Высокая эффективность этого метода практически подтверждена при решении сложных тестовых задач, а также задач течения и теплообмена вязкой несжимаемой жидкости. Однако теоретические положения, объясняющие высокую скорость сходимости и устойчивость метода, до сих пор оставались за кадром внимания, что и послужило причиной проведения настоящего исследования. В работе подробно излагается процедура эквивалентных и приближенных преобразований исходной системы линейных алгебраических уравнений (СЛАУ) как в матрично-векторной форме, так и виде расчетных формул метода. При этом для наглядности изложения материала ключевые моменты преобразований иллюстрируются схемами изменения разностных шаблонов, отвечающих преобразованным уравнениям. Конечная цель процедуры преобразований — получение канонической формы записи метода, из которого следует его корректность в случае сходимости решения. На основе анализа структур и элементных составов матричных операторов проводится оценка их норм и, соответственно, доказывается сходимость метода для произвольных начальных векторов.

    В специальном случае слабых ограничений на искомое решение производится оценка нормы оператора перехода. Показывается, что с ростом размерности матрицы этого оператора величина его нормы уменьшается пропорционально квадрату (или кубу, в зависимости от версии метода) шага сеточного разбиения области решения задачи. С помощью простых оценок получено необходимое условие устойчивости метода. Также даются рекомендации относительно выбора по порядку величины оптимального итерационного параметра компенсации. Теоретические выводы проиллюстрированы результатами решения тестовых задач. Показано, что при увеличении размерности сеточного разбиения области решения количество итераций, необходимых для достижения заданной точности решения, при прочих равных условиях уменьшается. Также продемонстрировано, что если слабые ограничения на решение нарушены при выборе его начального приближения, то в полном соответствии с полученными теоретическими результатами скорость сходимости метода существенно уменьшается.

    Fomin A.A., Fomina L.N.
    On the convergence of the implicit iterative line-by-line recurrence method for solving difference elliptical equations
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 857-880

    In the article a theory of the implicit iterative line-by-line recurrence method for solving the systems of finite-difference equations which arise as a result of approximation of the two-dimensional elliptic differential equations on a regular grid is stated. On the one hand, the high effectiveness of the method has confirmed in practice. Some complex test problems, as well as several problems of fluid flow and heat transfer of a viscous incompressible liquid, have solved with its use. On the other hand, the theoretical provisions that explain the high convergence rate of the method and its stability are not yet presented in the literature. This fact is the reason for the present investigation. In the paper, the procedure of equivalent and approximate transformations of the initial system of linear algebraic equations (SLAE) is described in detail. The transformations are presented in a matrix-vector form, as well as in the form of the computational formulas of the method. The key points of the transformations are illustrated by schemes of changing of the difference stencils that correspond to the transformed equations. The canonical form of the method is the goal of the transformation procedure. The correctness of the method follows from the canonical form in the case of the solution convergence. The estimation of norms of the matrix operators is carried out on the basis of analysis of structures and element sets of the corresponding matrices. As a result, the convergence of the method is proved for arbitrary initial vectors of the solution of the problem.

    The norm of the transition matrix operator is estimated in the special case of weak restrictions on a desired solution. It is shown, that the value of this norm decreases proportionally to the second power (or third degree, it depends on the version of the method) of the grid step of the problem solution area in the case of transition matrix order increases. The necessary condition of the method stability is obtained by means of simple estimates of the vector of an approximate solution. Also, the estimate in order of magnitude of the optimum iterative compensation parameter is given. Theoretical conclusions are illustrated by using the solutions of the test problems. It is shown, that the number of the iterations required to achieve a given accuracy of the solution decreases if a grid size of the solution area increases. It is also demonstrated that if the weak restrictions on solution are violated in the choice of the initial approximation of the solution, then the rate of convergence of the method decreases essentially in full accordance with the deduced theoretical results.

    Views (last year): 15. Citations: 1 (RSCI).
  7. Зыза А.В.
    Компьютерное исследование полиномиальных решений уравнений динамики гиростата
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 7-25

    В работе исследуются полиномиальные решения уравнений движения гиростата под действием потенциальных и гироскопических сил и уравнений движения гиростата в магнитном поле с учетом эффекта Барнетта–Лондона. В математической постановке каждая из указанных задач описывается системой нелинейных обыкновенных дифференциальных уравнений, правые части которых содержат пятнадцать постоянных параметров, характеризующих распределение масс гиростата, потенциальные и непотенциальные силы, действующие на гиростат. Рассмотрены полиномиальные решения двух классов: Стеклова–Ковалевского–Горячева и Докшевича. Структура инвариантных соотношений для полиномиальных решений показывает, что, как правило, к указанным выше пятнадцати параметрам добавляется еще не менее двадцати пяти параметров задачи. При решении такой многопараметрической задачи в статье наряду с аналитическими методами применяются численные методы, основанные на вычислительных математических пакетах. Исследование условий существования полиномиальных решений проведено в два этапа. На первом этапе выполнена оценка максимальных степеней рассмотренных полиномов и получена нелинейная алгебраическая система на параметры дифференциальных уравнений и полиномиальных решений. На втором этапе с помощью компьютерных вычислений исследованы условия разрешимости полученных систем и изучены условия действительности построенных решений.

    Для уравнений Кирхгофа–Пуассона построены два новых полиномиальных решения. Первое решение характеризуется следующим свойством: квадраты проекций угловой скорости на небарецентрические оси являются многочленами пятой степени от компоненты вектора угловой скорости на барецентрическую ось, которая выражается в виде гиперэллиптической функции времени. Второе решение характеризуется тем, что первая компонента угловой скорости является многочленом второго порядка, вторая компонента—многочленом третьего порядка, квадрат третьей компоненты—многочленом шестого порядка по вспомогательной переменной, которая является обращением эллиптического интеграла Лежандра.

    Третье решение построено для уравнений движения гиростата в магнитном поле с учетом эффекта Барнетта–Лондона. Для него структура такова: первая и вторая компоненты вектора угловой скорости—многочлены второй степени, квадрат третьей компоненты—многочлен четвертой степени по вспомогательной переменной, которая находится обращением эллиптического интеграла Лежандра.

    Все построенные решения не имеют аналогов в динамике твердого тела с неподвижной точкой.

    Zyza A.V.
    Computer studies of polynomial solutions for gyrostat dynamics
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 7-25

    We study polynomial solutions of gyrostat motion equations under potential and gyroscopic forces applied and of gyrostat motion equations in magnetic field taking into account Barnett–London effect. Mathematically, either of the above mentioned problems is described by a system of non-linear ordinary differential equations whose right hand sides contain fifteen constant parameters. These parameters characterize the gyrostat mass distribution, as well as potential and non-potential forces acting on gyrostat. We consider polynomial solutions of Steklov–Kovalevski–Gorjachev and Doshkevich classes. The structure of invariant relations for polynomial solutions shows that, as a rule, on top of the fifteen parameters mentioned one should add no less than twenty five problem parameters. In the process of solving such a multi-parametric problem in this paper we (in addition to analytic approach) apply numeric methods based on CAS. We break our studies of polynomial solutions existence into two steps. During the first step, we estimate maximal degrees of polynomials considered and obtain a non-linear algebraic system for parameters of differential equations and polynomial solutions. In the second step (using the above CAS software) we study the solvability conditions of the system obtained and investigate the conditions of the constructed solutions to be real.

    We construct two new polynomial solutions for Kirchhoff–Poisson. The first one is described by the following property: the projection squares of angular velocity on the non-baracentric axes are the fifth degree polynomials of the angular velocity vector component of the baracentric axis that is represented via hypereliptic function of time. The second solution is characterized by the following: the first component of velocity conditions is a second degree polynomial, the second component is a polynomial of the third degree, and the square of the third component is the sixth degree polynomial of the auxiliary variable that is an inversion of the elliptic Legendre integral.

    The third new partial solution we construct for gyrostat motion equations in the magnetic field with Barnett–London effect. Its structure is the following: the first and the second components of the angular velocity vector are the second degree polynomials, and the square of the third component is a fourth degree polynomial of the auxiliary variable which is found via inversion of the elliptic Legendre integral of the third kind.

    All the solutions constructed in this paper are new and do not have analogues in the fixed point dynamics of a rigid body.

    Views (last year): 15.
  8. В данной статье решается задача определения функционального состояния опьянения водителей автотранспортных средств. Ее решение актуально в сфере транспортной безопасности при прохождении предрейсовых медицинских осмотров. Решение задачи основано на применении метода пупиллометрии, позволяющего судить о состоянии водителя по его зрачковой реакции на изменение освещенности. Производится постановка задачи определения состояния опьянения водителя по анализу значений параметров пупиллограммы — временного ряда, характеризующего изменение размеров зрачка при воздействии кратковременного светового импульса. Для анализа пупиллограмм предлагается использовать нейронную сеть. Разработана нейросетевая модель определения функционального состояния опьянения водителей. Для ее обучения использованы специально подготовленные выборки данных, представляющие собой сгруппированные по двум классам функциональных состояний водителей значения следующих параметров зрачковых реакций: диаметр начальный, диаметр минимальный, диаметр половинного сужения, диаметр конечный, амплитуда сужения, скорость сужения, скорость расширения, латентное время реакции, время сужения, время расширения, время половинного сужения и время половинного расширения. Приводится пример исходных данных. На основе их анализа построена нейросетевая модель в виде однослойного персептрона, состоящего из двенадцати входных нейронов, двадцати пяти нейронов скрытого слоя и одного выходного нейрона. Для повышения адекватности модели методом ROC-анализа определена оптимальная точка отсечения классов решений на выходе нейронной сети. Предложена схема определения состояния опьянения водителей, включающая следующие этапы: видеорегистрация зрачковой реакции, построение пупиллограммы, вычисление значений ее параметров, анализ данных на основе нейросетевой модели, классификация состояния водителя как «норма» или «отклонение от нормы», принятие решений по проверяемому лицу. Медицинскому работнику, проводящему осмотр водителя, представляется нейросетевая оценка его состояния опьянения. На основе данной оценки производится заключение о допуске или отстранении водителя от управления транспортным средством. Таким образом, нейросетевая модель решает задачу повышения эффективности проведения предрейсового медицинского осмотра за счет повышения достоверности принимаемых решений.

    Akhmetvaleev A.M., Katasev A.S.
    Neural network model of human intoxication functional state determining in some problems of transport safety solution
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 285-293

    This article solves the problem of vehicles drivers intoxication functional statedetermining. Its solution is relevant in the transport security field during pre-trip medical examination. The problem solution is based on the papillomometry method application, which allows to evaluate the driver state by his pupillary reaction to illumination change. The problem is to determine the state of driver inebriation by the analysis of the papillogram parameters values — a time series characterizing the change in pupil dimensions upon exposure to a short-time light pulse. For the papillograms analysis it is proposed to use a neural network. A neural network model for determining the drivers intoxication functional state is developed. For its training, specially prepared data samples are used which are the values of the following parameters of pupillary reactions grouped into two classes of functional states of drivers: initial diameter, minimum diameter, half-constriction diameter, final diameter, narrowing amplitude, rate of constriction, expansion rate, latent reaction time, the contraction time, the expansion time, the half-contraction time, and the half-expansion time. An example of the initial data is given. Based on their analysis, a neural network model is constructed in the form of a single-layer perceptron consisting of twelve input neurons, twenty-five neurons of the hidden layer, and one output neuron. To increase the model adequacy using the method of ROC analysis, the optimal cut-off point for the classes of solutions at the output of the neural network is determined. A scheme for determining the drivers intoxication state is proposed, which includes the following steps: pupillary reaction video registration, papillogram construction, parameters values calculation, data analysis on the base of the neural network model, driver’s condition classification as “norm” or “rejection of the norm”, making decisions on the person being audited. A medical worker conducting driver examination is presented with a neural network assessment of his intoxication state. On the basis of this assessment, an opinion on the admission or removal of the driver from driving the vehicle is drawn. Thus, the neural network model solves the problem of increasing the efficiency of pre-trip medical examination by increasing the reliability of the decisions made.

    Views (last year): 42. Citations: 2 (RSCI).
  9. Гасников А.В., Горбунов Э.А., Ковалев Д.А., Мохаммед А.А., Черноусова Е.О.
    Обоснование гипотезы об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 737-753

    В данной работе рассматривается проксимальный быстрый градиентный метод Монтейро – Свайтера (2013 г.), в котором используется один шаг метода Ньютона для приближенного решения вспомогательной задачи на каждой итерации проксимального метода. Метод Монтейро – Свайтера является оптимальным (по числу вычислений градиента и гессиана оптимизируемой функции) для достаточно гладких задач выпуклой оптимизации в классе методов, использующих только градиент и гессиан оптимизируемой функции. За счет замены шага метода Ньютона на шаг недавно предложенного тензорного метода Ю. Е. Нестерова (2018 г.), а также за счет специального обобщения условия подбора шага в проксимальном внешнем быстром градиентном методе удалось предложить оптимальный тензорный метод, использующий старшие производные. В частности, такой тензорный метод, использующий производные до третьего порядка включительно, оказался достаточно практичным ввиду сложности итерации, сопоставимой со сложностью итерации метода Ньютона. Таким образом, получено конструктивное решение задачи, поставленной Ю. Е. Нестеровым в 2018 г., об устранении зазора в точных нижних и завышенных верхних оценках скорости сходимости для имеющихся на данный момент тензорных методов порядка $p \geqslant 3$.

    Gasnikov A.V., Gorbunov E.A., Kovalev D.A., Mohammed A.A., Chernousova E.O.
    The global rate of convergence for optimal tensor methods in smooth convex optimization
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 737-753

    In this work we consider Monteiro – Svaiter accelerated hybrid proximal extragradient (A-HPE) framework and accelerated Newton proximal extragradient (A-NPE) framework. The last framework contains an optimal method for rather smooth convex optimization problems with second-order oracle. We generalize A-NPE framework for higher order derivative oracle (schemes). We replace Newton’s type step in A-NPE that was used for auxiliary problem by Newton’s regularized (tensor) type step (Yu. Nesterov, 2018). Moreover we generalize large step A-HPE/A-NPE framework by replacing Monteiro – Svaiter’s large step condition so that this framework could work for high-order schemes. The main contribution of the paper is as follows: we propose optimal highorder methods for convex optimization problems. As far as we know for that moment there exist only zero, first and second order optimal methods that work according to the lower bounds. For higher order schemes there exists a gap between the lower bounds (Arjevani, Shamir, Shiff, 2017) and existing high-order (tensor) methods (Nesterov – Polyak, 2006; Yu.Nesterov, 2008; M. Baes, 2009; Yu.Nesterov, 2018). Asymptotically the ratio of the rates of convergences for the best existing methods and lower bounds is about 1.5. In this work we eliminate this gap and show that lower bounds are tight. We also consider rather smooth strongly convex optimization problems and show how to generalize the proposed methods to this case. The basic idea is to use restart technique until iteration sequence reach the region of quadratic convergence of Newton method and then use Newton method. One can show that the considered method converges with optimal rates up to a logarithmic factor. Note, that proposed in this work technique can be generalized in the case when we can’t solve auxiliary problem exactly, moreover we can’t even calculate the derivatives of the functional exactly. Moreover, the proposed technique can be generalized to the composite optimization problems and in particular to the constraint convex optimization problems. We also formulate a list of open questions that arise around the main result of this paper (optimal universal method of high order e.t.c.).

    Views (last year): 75.
  10. Тюрин А.И.
    Прямо-двойственный быстрый градиентный метод с моделью
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 263-274

    В данной работе рассматривается возможность применения концепции $(\delta, L)$-модели функции для оптимизационных задач, в которых посредством решения прямой задачи имеется необходимость восстанавливать решение двойственной задачи. Концепция $(\delta, L)$-модели основана на концепции $(\delta, L)$-оракула, предложенной Деволдером–Глинером–Нестеровым, при этом данные авторы предложили фукнционалы в оптимизационных задачах аппроксимировать сверху выпуклой параболой с некоторым аддитивным шумом $\delta$; таким образом, им удалось получить квадратичные верхние оценки с шумом даже для негладких функционалов. Концепция $(\delta, L)$-модели продолжает эту идею за счет того, что аппроксимация сверху делается не выпуклой параболой, а некоторым более сложным выпуклым функционалом. Возможность восстанавливать решение двойственной задачи хорошо зарекомендовала себя, так как во многих случаях в прямой задаче можно значительно быстрее находить решение, чем в двойственной. Отметим, что прямо-двойственные методы хорошо изучены, но при этом, как правило, каждый метод предлагается под конкретный класс задач. Наша же цель — предложить метод, который бы включал в себя сразу различные методы. Это реализуется за счет использования концепции $(\delta, L)$-модели и адаптивной структуры наших методов. Таким образом, нам удалось получить прямо-двойственный адаптивный градиентный метод и быстрый градиентный метод с $(\delta, L)$-моделью и доказать оценки сходимости для них, причем для некоторых классов задач данные оценки являются оптимальными. Основная идея заключается в том, что нахождение двойственных решений происходит относительно оптимизационной задачи, которая аппроксимируют прямую с помощью концепции $(\delta, L)$-модели и имеет более простую структуру, поэтому находить двойственное решение у нее проще. Стоит отметить, что это происходит на каждом шаге работы оптимизационного метода; таким образом, реализуется принцип «разделяй и властвуй».

    Tyurin A.I.
    Primal-dual fast gradient method with a model
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 263-274

    In this work we consider a possibility to use the conception of $(\delta, L)$-model of a function for optimization tasks, whereby solving a primal problem there is a necessity to recover a solution of a dual problem. The conception of $(\delta, L)$-model is based on the conception of $(\delta, L)$-oracle which was proposed by Devolder–Glineur–Nesterov, herewith the authors proposed approximate a function with an upper bound using a convex quadratic function with some additive noise $\delta$. They managed to get convex quadratic upper bounds with noise even for nonsmooth functions. The conception of $(\delta, L)$-model continues this idea by using instead of a convex quadratic function a more complex convex function in an upper bound. Possibility to recover the solution of a dual problem gives great benefits in different problems, for instance, in some cases, it is faster to find a solution in a primal problem than in a dual problem. Note that primal-dual methods are well studied, but usually each class of optimization problems has its own primal-dual method. Our goal is to develop a method which can find solutions in different classes of optimization problems. This is realized through the use of the conception of $(\delta, L)$-model and adaptive structure of our methods. Thereby, we developed primal-dual adaptive gradient method and fast gradient method with $(\delta, L)$-model and proved convergence rates of the methods, moreover, for some classes of optimization problems the rates are optimal. The main idea is the following: we find a dual solution to an approximation of a primal problem using the conception of $(\delta, L)$-model. It is much easier to find a solution to an approximated problem, however, we have to do it in each step of our method, thereby the principle of “divide and conquer” is realized.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"