All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.
Ключевые слова: аппроксимация, сплайн, численные методы, метод конечных элементов, математическая физика, теория упругости.
Mathematical modeling of bending of a circular plate using $S$-splines
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 977-988Views (last year): 4.This article is dedicated to the use of higher degree $S$-splines for solving equations of the elasticity theory. As an example we consider the solution to the equation of bending of a plate on a circle. $S$-spline is a piecewise-polynomial function. Its coefficients are defined by two conditions. The first part of the coefficients are defined by the smoothness of the spline. The rest are determined using the least-squares method. We consider class $C^4$ 7th degree $S$-splines.
- Views (last year): 10.
-
Компьютерное исследование полиномиальных решений уравнений динамики гиростата
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 7-25В работе исследуются полиномиальные решения уравнений движения гиростата под действием потенциальных и гироскопических сил и уравнений движения гиростата в магнитном поле с учетом эффекта Барнетта–Лондона. В математической постановке каждая из указанных задач описывается системой нелинейных обыкновенных дифференциальных уравнений, правые части которых содержат пятнадцать постоянных параметров, характеризующих распределение масс гиростата, потенциальные и непотенциальные силы, действующие на гиростат. Рассмотрены полиномиальные решения двух классов: Стеклова–Ковалевского–Горячева и Докшевича. Структура инвариантных соотношений для полиномиальных решений показывает, что, как правило, к указанным выше пятнадцати параметрам добавляется еще не менее двадцати пяти параметров задачи. При решении такой многопараметрической задачи в статье наряду с аналитическими методами применяются численные методы, основанные на вычислительных математических пакетах. Исследование условий существования полиномиальных решений проведено в два этапа. На первом этапе выполнена оценка максимальных степеней рассмотренных полиномов и получена нелинейная алгебраическая система на параметры дифференциальных уравнений и полиномиальных решений. На втором этапе с помощью компьютерных вычислений исследованы условия разрешимости полученных систем и изучены условия действительности построенных решений.
Для уравнений Кирхгофа–Пуассона построены два новых полиномиальных решения. Первое решение характеризуется следующим свойством: квадраты проекций угловой скорости на небарецентрические оси являются многочленами пятой степени от компоненты вектора угловой скорости на барецентрическую ось, которая выражается в виде гиперэллиптической функции времени. Второе решение характеризуется тем, что первая компонента угловой скорости является многочленом второго порядка, вторая компонента—многочленом третьего порядка, квадрат третьей компоненты—многочленом шестого порядка по вспомогательной переменной, которая является обращением эллиптического интеграла Лежандра.
Третье решение построено для уравнений движения гиростата в магнитном поле с учетом эффекта Барнетта–Лондона. Для него структура такова: первая и вторая компоненты вектора угловой скорости—многочлены второй степени, квадрат третьей компоненты—многочлен четвертой степени по вспомогательной переменной, которая находится обращением эллиптического интеграла Лежандра.
Все построенные решения не имеют аналогов в динамике твердого тела с неподвижной точкой.
Ключевые слова: полиномиальные решения, уравнения Кирхгофа–Пуассона, гиростат, потенциальные и гироскопические силы, эффект Барнетта–Лондона, эллиптические интегралы Лежандра.
Computer studies of polynomial solutions for gyrostat dynamics
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 7-25Views (last year): 15.We study polynomial solutions of gyrostat motion equations under potential and gyroscopic forces applied and of gyrostat motion equations in magnetic field taking into account Barnett–London effect. Mathematically, either of the above mentioned problems is described by a system of non-linear ordinary differential equations whose right hand sides contain fifteen constant parameters. These parameters characterize the gyrostat mass distribution, as well as potential and non-potential forces acting on gyrostat. We consider polynomial solutions of Steklov–Kovalevski–Gorjachev and Doshkevich classes. The structure of invariant relations for polynomial solutions shows that, as a rule, on top of the fifteen parameters mentioned one should add no less than twenty five problem parameters. In the process of solving such a multi-parametric problem in this paper we (in addition to analytic approach) apply numeric methods based on CAS. We break our studies of polynomial solutions existence into two steps. During the first step, we estimate maximal degrees of polynomials considered and obtain a non-linear algebraic system for parameters of differential equations and polynomial solutions. In the second step (using the above CAS software) we study the solvability conditions of the system obtained and investigate the conditions of the constructed solutions to be real.
We construct two new polynomial solutions for Kirchhoff–Poisson. The first one is described by the following property: the projection squares of angular velocity on the non-baracentric axes are the fifth degree polynomials of the angular velocity vector component of the baracentric axis that is represented via hypereliptic function of time. The second solution is characterized by the following: the first component of velocity conditions is a second degree polynomial, the second component is a polynomial of the third degree, and the square of the third component is the sixth degree polynomial of the auxiliary variable that is an inversion of the elliptic Legendre integral.
The third new partial solution we construct for gyrostat motion equations in the magnetic field with Barnett–London effect. Its structure is the following: the first and the second components of the angular velocity vector are the second degree polynomials, and the square of the third component is a fourth degree polynomial of the auxiliary variable which is found via inversion of the elliptic Legendre integral of the third kind.
All the solutions constructed in this paper are new and do not have analogues in the fixed point dynamics of a rigid body.
-
Оценка числа итераций для сильно полиномиальных алгоритмов линейного программирования
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 249-285Рассматривается прямой алгоритм решения задачи линейного программирования (ЛП), заданной в каноническом виде. Алгоритм состоит из двух последовательных этапов, на которых прямым методом решаются приведенные ниже задачи ЛП: невырожденная вспомогательная задача (на первом этапе) и некоторая задача, равносильная исходной (на втором). В основе построения вспомогательной задачи лежит мультипликативный вариант метода исключения Гаусса, в самой структуре которого заложены возможности: идентификации несовместности и линейной зависимости ограничений; идентификации переменных, оптимальные значения которых заведомо равны нулю; фактического исключения прямых переменных и сокращения размерности пространства, в котором определено решение исходной задачи. В процессе фактического исключения переменных алгоритм генерирует последовательность мультипликаторов, главные строки которых формируют матрицу ограничений вспомогательной задачи, причем возможность минимизация заполнения главных строк мультипликаторов заложена в самой структуре прямых методов. При этом отсутствует необходимость передачи информации (базис, план и оптимальное значение целевой функции) на второй этап алгоритма и применения одного из способов устранения зацикливания для гарантии конечной сходимости.
Представлены два варианта алгоритма решения вспомогательной задачи в сопряженной канонической форме. Первый основан на ее решении прямым алгоритмом в терминах симплекс-метода, а второй — на решении задачи, двойственной к ней, симплекс-методом. Показано, что оба варианта алгоритма для одинаковых исходных данных (входов) генерируют одинаковую последовательность точек: базисное решение и текущее двойственное решение вектора оценок строк. Отсюда сделан вывод, что прямой алгоритм — это алгоритм типа симплекс-метода. Также показано, что сравнение вычислительных схем приводит к выводу, что прямой алгоритм позволяет уменьшить по кубическому закону число арифметических операций, необходимых для решения вспомогательной задачи, по сравнению с симплекс-методом. Приводится оценка числа итераций.
Ключевые слова: линейное программирование, алгоритм симплекс-метода, прямой алгоритм, число итераций, сильно полиномиальный алгоритм.
The iterations’ number estimation for strongly polynomial linear programming algorithms
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 249-285A direct algorithm for solving a linear programming problem (LP), given in canonical form, is considered. The algorithm consists of two successive stages, in which the following LP problems are solved by a direct method: a non-degenerate auxiliary problem at the first stage and some problem equivalent to the original one at the second. The construction of the auxiliary problem is based on a multiplicative version of the Gaussian exclusion method, in the very structure of which there are possibilities: identification of incompatibility and linear dependence of constraints; identification of variables whose optimal values are obviously zero; the actual exclusion of direct variables and the reduction of the dimension of the space in which the solution of the original problem is determined. In the process of actual exclusion of variables, the algorithm generates a sequence of multipliers, the main rows of which form a matrix of constraints of the auxiliary problem, and the possibility of minimizing the filling of the main rows of multipliers is inherent in the very structure of direct methods. At the same time, there is no need to transfer information (basis, plan and optimal value of the objective function) to the second stage of the algorithm and apply one of the ways to eliminate looping to guarantee final convergence.
Two variants of the algorithm for solving the auxiliary problem in conjugate canonical form are presented. The first one is based on its solution by a direct algorithm in terms of the simplex method, and the second one is based on solving a problem dual to it by the simplex method. It is shown that both variants of the algorithm for the same initial data (inputs) generate the same sequence of points: the basic solution and the current dual solution of the vector of row estimates. Hence, it is concluded that the direct algorithm is an algorithm of the simplex method type. It is also shown that the comparison of numerical schemes leads to the conclusion that the direct algorithm allows to reduce, according to the cubic law, the number of arithmetic operations necessary to solve the auxiliary problem, compared with the simplex method. An estimate of the number of iterations is given.
-
Формулы Фейнмана для решений уравнений типа Шредингера с полиномиальными потенциалами четвертого порядка
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 497-507В работе изучены условия существования фейнмановских интегралов в смысле аналитического продолжения от функционалов экспоненциального вида с полиномом четвертого порядка в показателе, построены их представления в виде гауссовских интегралов. Показано, что уравнение типа Шрёдингера в бесконечномерном пространстве в случае полиномиального потенциала четвертой степени имеет решение, которое описывается интегралом Фейнмана по траекториям в конфигурационном пространстве.
Feynman formulae for solutions of Schrodinger-type equations with fourth-power polinomial potentials
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 497-507The conditions for the existence of Feynman integrals in a sense of analytic continuation of the exponential functionals with a fourth-power polynomial in the index are studied, their presentations by Gaussian integrals are constructed in the paper. It is shown that the Schrodinger-type equation in the infinite-dimensional space in the case of fourth-power polynomial potential has a solution which is described by the Feynman path integral in configuration space.
-
Прямые мультипликативные методы для разреженных матриц. Ньютоновские методы
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 679-703Рассматривается численно устойчивый прямой мультипликативный алгоритм решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество алгоритма состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью $LU$-разложения, просто другая схема реализации метода исключения Гаусса.
В данной работе этот алгоритм лежит в основе решения следующих задач.
Задача 1. Задание направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из известных техник построения существенно положительно определенной матрицы. Такой подход позволяет ослабить или снять дополнительные специфические трудности, обусловленные необходимостью решения больших систем уравнений с разреженными матрицами, представленных в упакованном виде.
Задача 2. Построение новой математической формулировки задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности. Они достаточно просты и могут быть использованы для построения методов математического программирования, например для поиска минимума квадратичной функции на многогранном множестве ограничений, основанного на решениях систем линейных уравнений, размерность которых не выше числа переменных целевой функции.
Задача 3. Построение непрерывного аналога задачи минимизации вещественного квадратичного многочлена от булевых переменных и новой формы задания необходимых и достаточных условий оптимальности для разработки методов их решения за полиномиальное время. В результате исходная задача сводится к задаче поиска минимального расстояния между началом координат и угловой точкой выпуклого многогранника (полиэдра), который является возмущением $n$-мерного куба и описывается системой двойных линейных неравенств с верхней треугольной матрицей коэффициентов с единицами на главной диагонали. Исследованию подлежат только две грани, одна из которых или обе содержат вершины, ближайшие к началу координат. Для их вычисления достаточно решить $4n – 4$ систем линейных уравнений и выбрать среди них все ближайшие равноудаленные вершины за полиномиальное время. Задача минимизации квадратичного полинома является $NP$-трудной, поскольку к ней сводится $NP$-трудная задача о вершинном покрытии для произвольного графа. Отсюда следует вывод, что $P = NP$, в основе построения которого лежит выход за пределы целочисленных методов оптимизации.
Ключевые слова: $NP$-трудные задачи, разреженные матрицы, ньютоновские методы, прямой мультипликативный алгоритм, направление спуска, новые математические формулировки, необходимые и достаточные условия оптимальности, минимизация псевдобулевой функции, псевдобулево программирование, линейное программирование.
Direct multiplicative methods for sparse matrices. Newton methods
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703Views (last year): 7. Citations: 1 (RSCI).We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.
In this paper, this algorithm is the basis for solving the following problems:
Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.
Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.
Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.
-
Решение краевых задач с помощью S-сплайна
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 161-171Данная работа посвящена применению теории S-сплайнов для решения уравнений в частных производных на примере уравнения Пуассона. S-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. В зависимости от порядка рассматриваемых полиномов и соотношения между количеством условий первого и второго типов мы получаем S-сплайны с разными свойствами. На настоящий момент изучены сплайны 3-й степени класса C1 и сплайны 5-й степени класса C2(т.е. на них накладывались условия гладкой склейки вплоть до первой и второй производных соответственно). Мы рассмотрим, каким образом могут быть применены сплайны 3-й степени класса C1 при решении уравнения Пуассона на круге и в других областях.
Solving of boundary tasks by using S-spline
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 161-171Views (last year): 8. Citations: 8 (RSCI).This article is dedicated to use of S-spline theory for solving equations in partial derivatives. For example, we consider solution of the Poisson equation. S-spline — is a piecewise-polynomial function. Its coefficients are defined by two states. The first part of coefficients are defined by smoothness of the spline. The second coefficients are determined by least-squares method. According to order of considered polynomial and number of conditions of first and second type we get S-splines with different properties. At this moment we have investigated order 3 S-splines of class C1 and order 5 S-splines of class C2 (they meet conditions of smoothness of order 1 and 2 respectively). We will consider how the order 3 S-splines of class C1 can be applied for solving equation of Poisson on circle and other areas.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"