Результаты поиска по 'процессы взаимодействия':
Найдено статей: 103
  1. Чэнь Ц., Лобанов А.В., Рогозин А.В.
    Решение негладких распределенных минимаксных задач с применением техники сглаживания
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 469-480

    Распределенные седловые задачи имеют множество различных приложений в оптимизации, теории игр и машинном обучении. Например, обучение генеративных состязательных сетей может быть представлено как минимаксная задача, а также задача обучения линейных моделей с регуляризатором может быть переписана как задача поиска седловой точки. В данной статье исследуются распределенные негладкие седловые задачи с липшицевыми целевыми функциями (возможно, недифференцируемыми). Целевая функция представляется в виде суммы нескольких слагаемых, распределенных между группой вычислительных узлов. Каждый узел имеет доступ к локально хранимой функции. Узлы, или агенты, обмениваются информацией через некоторую коммуникационную сеть, которая может быть централизованной или децентрализованной. В централизованной сети есть универсальный агрегатор информации (сервер или центральный узел), который напрямую взаимодействует с каждым из агентов и, следовательно, может координировать процесс оптимизации. В децентрализованной сети все узлы равноправны, серверный узел отсутствует, и каждый агент может общаться только со своими непосредственными соседями.

    Мы предполагаем, что каждый из узлов локально хранит свою целевую функцию и может вычислить ее значение в заданных точках, т. е. имеет доступ к оракулу нулевого порядка. Информация нулевого порядка используется, когда градиент функции является трудно вычислимым, а также когда его невозможно вычислить или когда функция не дифференцируема. Например, в задачах обучения с подкреплением необходимо сгенерировать траекторию для оценки текущей стратегии. Этот процесс генерирования траектории и оценки политики можно интерпретировать как вычисление значения функции. Мы предлагаем подход, использующий технику сглаживания, т. е. применяющий метод первого порядка к сглаженной версии исходной функции. Можно показать, что стохастический градиент сглаженной функции можно рассматривать как случайную двухточечную аппроксимацию градиента исходной функции. Подходы, основанные на сглаживании, были изучены для распределенной минимизации нулевого порядка, и наша статья обобщает метод сглаживания целевой функции на седловые задачи.

    Chen J., Lobanov A.V., Rogozin A.V.
    Nonsmooth Distributed Min-Max Optimization Using the Smoothing Technique
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 469-480

    Distributed saddle point problems (SPPs) have numerous applications in optimization, matrix games and machine learning. For example, the training of generated adversarial networks is represented as a min-max optimization problem, and training regularized linear models can be reformulated as an SPP as well. This paper studies distributed nonsmooth SPPs with Lipschitz-continuous objective functions. The objective function is represented as a sum of several components that are distributed between groups of computational nodes. The nodes, or agents, exchange information through some communication network that may be centralized or decentralized. A centralized network has a universal information aggregator (a server, or master node) that directly communicates to each of the agents and therefore can coordinate the optimization process. In a decentralized network, all the nodes are equal, the server node is not present, and each agent only communicates to its immediate neighbors.

    We assume that each of the nodes locally holds its objective and can compute its value at given points, i. e. has access to zero-order oracle. Zero-order information is used when the gradient of the function is costly, not possible to compute or when the function is not differentiable. For example, in reinforcement learning one needs to generate a trajectory to evaluate the current policy. This policy evaluation process can be interpreted as the computation of the function value. We propose an approach that uses a smoothing technique, i. e., applies a first-order method to the smoothed version of the initial function. It can be shown that the stochastic gradient of the smoothed function can be viewed as a random two-point gradient approximation of the initial function. Smoothing approaches have been studied for distributed zero-order minimization, and our paper generalizes the smoothing technique on SPPs.

  2. Федоров В.А., Хрущев С.С., Коваленко И.Б.
    Анализ траекторий броуновской и молекулярной динамики для выявления механизмов белок-белковых взаимодействий
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 723-738

    В работе предложен набор достаточно простых алгоритмов, который может быть применен для анализа широкого круга белок-белковых взаимодействий. В настоящей работе мы совместно используем методы броуновской и молекулярной динамики для описания процесса образования комплекса белков пластоцианина и цитохрома f высших растений. В диффузионно-столкновительном комплексе выявлено два кластера структур, переход между которыми возможен с сохранением положения центра масс молекул и сопровождается лишь поворотом пластоцианина на 134 градуса. Первый и второй кластеры структур столкновительных комплексов отличаются тем, что в первом кластере с положительно заряженной областью вблизи малого домена цитохрома f контактирует только «нижняя» область пластоцианина, в то время как во втором кластере — обе отрицательно заряженные области. «Верхняя» отрицательно заряженная область пластоцианина в первом кластере оказывается в контакте с аминокислотным остатком лизина K122. При образовании финального комплекса происходит поворот молекулы пластоцианина на 69 градусов вокруг оси, проходящей через обе области электростатического контакта. При этом повороте происходит вытеснение воды из областей, находящихся вблизи кофакторов молекул и сформированных гидрофобными аминокислотными остатками. Это приводит к появлению гидрофобных контактов, уменьшению расстояния между кофакторами до расстояния менее 1,5 нм и дальнейшей стабилизации комплекса в положении, пригодном для передачи электрона. Такие характеристики, как матрицы контактов, оси поворота при переходе между состояниями и графики изменения количества контактов в процессе моделирования, позволяют определить ключевые аминокислотные остатки, участвующие в формировании комплекса и выявить физико-химические механизмы, лежащие в основе этого процесса.

    Fedorov V.A., Khruschev S.S., Kovalenko I.B.
    Analysis of Brownian and molecular dynamics trajectories of to reveal the mechanisms of protein-protein interactions
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 723-738

    The paper proposes a set of fairly simple analysis algorithms that can be used to analyze a wide range of protein-protein interactions. In this work, we jointly use the methods of Brownian and molecular dynamics to describe the process of formation of a complex of plastocyanin and cytochrome f proteins in higher plants. In the diffusion-collision complex, two clusters of structures were revealed, the transition between which is possible with the preservation of the position of the center of mass of the molecules and is accompanied only by a rotation of plastocyanin by 134 degrees. The first and second clusters of structures of collisional complexes differ in that in the first cluster with a positively charged region near the small domain of cytochrome f, only the “lower” plastocyanin region contacts, while in the second cluster, both negatively charged regions. The “upper” negatively charged region of plastocyanin in the first cluster is in contact with the amino acid residue of lysine K122. When the final complex is formed, the plastocyanin molecule rotates by 69 degrees around an axis passing through both areas of electrostatic contact. With this rotation, water is displaced from the regions located near the cofactors of the molecules and formed by hydrophobic amino acid residues. This leads to the appearance of hydrophobic contacts, a decrease in the distance between the cofactors to a distance of less than 1.5 nm, and further stabilization of the complex in a position suitable for electron transfer. Characteristics such as contact matrices, rotation axes during the transition between states, and graphs of changes in the number of contacts during the modeling process make it possible to determine the key amino acid residues involved in the formation of the complex and to reveal the physicochemical mechanisms underlying this process.

  3. Малков С.Ю., Шпырко О.А.
    Особенности социальных взаимодействий: базовая модель
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1673-1693

    В работе рассматриваются базовая модель конкурентных взаимодействий и ее использование для анализа и описания социальных процессов. Особенностью модели является то, что она описывает взаимодействие нескольких конкурирующих акторов, при этом акторы могут варьировать стратегию своих действий, в частности, образовывать коалиции для совместного противодействия общему противнику.

    В результате моделирования выявлены различные режимы конкурентного взаимодействия, проведена их классификация, описаны их особенности. В ходе исследования уделено внимание так называемым негрубым (по А.А. Андронову) случаям реализации конкурентного взаимодействия, которые до сих пор редко рассматривались в научной литературе, но зато достаточно часто встречаются в реальной жизни. Сиспо льзованием базовой математической модели рассмотрены условия реализации различных режимов конкурентных взаимодействий, определены условия перехода от одних режимов к другим, приведены примеры реализации этих режимов в экономике, социальной и политической жизни.

    Показано, что при относительно невысоком уровне конкуренции, носящей неантагонистический характер, конкуренция может приводить к повышению активности взаимодействующих акторов и к общему экономическому росту. Причем при наличии расширяющихся ресурсных возможностей (до тех пор, пока такие возможности сохраняются) данный рост может иметь гиперболический характер. При снижении ресурсных возможностей и усилении конкуренции происходит переход к колебательному режиму, когда более слабые акторы объединяются для совместного противодействия более сильным. При дальнейшем снижении ресурсных возможностей и усилении конкуренции происходит переход к формированию устойчивых иерархических структур. При этом модель показывает, что в определенный момент происходит потеря устойчивости, система становится негрубой (по А.А. Андронову) и чувствительной к флуктуациям изменений параметров. В результате сложившиеся иерархии могут разрушиться и замениться на новые. При дальнейшем повышении интенсивности конкуренции происходит полное подавление актором-лидером своих оппонентов и установление монополизма.

    Приведены примеры из экономической, социальной, политической жизни, иллюстрирующие закономерности, выявленные на основе моделирования с использованием базовой модели конкуренции. Полученные результаты могут быть использованы при анализе, моделировании и прогнозировании социально-экономических и политических процессов.

    Malkov S.Yu., Shpyrko O.A.
    Features of social interactions: the basic model
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1673-1693

    The paper considers the basic model of competitive interactions and its use for the analysis and description of social processes. The peculiarity of the model is that it describes the interaction of several competing actors, while actors can vary the strategy of their actions, in particular, form coalitions to jointly counter a common enemy. As a result of modeling, various modes of competitive interaction were identified, their classification was conducted, and their features were described. In the course of the study, the attention is paid to the so-called “rough” (according to A.A. Andronov) cases of the implementation of competitive interaction, which until now have rarely been considered in the scientific literature, but are quite common in real life. Using a basic mathematical model, the conditions for the implementation of various modes of competitive interactions are considered, the conditions for the transition from one mode to another are determined, examples of the implementation of these modes in the economy, social and political life are given. It is shown that with a relatively low level of competition, which is non-antagonistic in nature, competition can lead to an increase in the activity of interacting actors and to overall economic growth. Moreover, in the presence of expanding resource opportunities (as long as such opportunities remain), this growth may have a hyperbolic character. With a decrease in resource capabilities and increased competition, there is a transition to an oscillatory mode, when weaker actors unite to jointly counteract stronger ones. With a further decrease in resource opportunities and increased competition, there is a transition to the formation of stable hierarchical structures. At the same time, the model shows that at a certain moment there is a loss of stability, the system becomes “rough” according to A.A. Andronov and sensitive to fluctuations in parameter changes. As a result, the existing hierarchies may collapse and be replaced by new ones. With a further increase in the intensity of competition, the actor-leader completely suppresses his opponents and establishes monopolism. Examples from economic, social, and political life are given, illustrating the patterns identified on the basis of modeling using the basic model of competition. The obtained results can be used in the analysis, modeling and forecasting of socioeconomic and political processes.

Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"