Результаты поиска по 'разностные схемы':
Найдено статей: 66
  1. Потапов И.И., Снигур К.С.
    О решении уравнения Экснера для дна, имеющего сложную морфологию
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 449-461

    Для математического моделирования несвязного речного дна широко используется уравнение Экснера совместно с феноменологическими моделями транспорта наносов. В случае моделирования эволюции дна простой геометрической формы такой подход позволяет получить точное решение без каких-либо затруднений. Однако в случае моделирования неустойчивого дна сложной геометрической формы в ряде случаев возникает численная неустойчивость, которую сложно отделить от естественной физической неустойчивости.

    В настоящей работе выполнен анализпр ичин возникновения численной неустойчивости при моделировании эволюции дна сложной геометрической формы с помощью уравнения Экснера и феноменологических моделей расхода наносов. Показано, что при численном решении уравнения Экснера, замкнутого феноменологической моделью транспорта наносов, могут реализовываться два вида неопределенности. Первая неопределенность возникает при условии транзита наносов над областью дна, где деформаций не происходит. Вторая неопределенность возникает в точках экстремума донного профиля, когда расход наносов меняется, а дно остается неизменным. Авторами выполнено замыкание уравнения Экснера с помощью аналитической модели транспорта наносов, которое позволило преобразовать уравнение Экснера к уравнению параболического типа. Анализполу ченного уравнения показал, что его численное решение не приводит к возникновению вышеуказанных неопределенностей. Параболический вид преобразованного уравнения Экснера позволяет применить для его решения эффективную и устойчивую неявную центрально-разностную схему.

    Выполнено решение модельной задачи об эволюции дна при периодическом распределении придонного касательного напряжения. Для численного решения задачи использовалась явная центрально-разностная схема с применением и без применения метода фильтрации и неявная центрально-разностная схема. Показано, что явная центрально-разностная схема теряет устойчивость в области экстремума донного профиля. Использование метода фильтрации привело к повышенной диссипативности решения. Решение с помощью неявной центрально-разностной схемы соответствует закону распределения придонного касательного напряжения и является устойчивым во всей расчетной области.

    Potapov I.I., Snigur K.S.
    Solving of the Exner equation for morphologically complex bed
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 449-461

    The Exner equation in conjunction phenomenological sediment transport models is widely used for mathematical modeling non-cohesive river bed. This approach allows to obtain an accurate solution without any difficulty if one models evolution of simple shape bed. However if one models evolution of complex shape bed with unstable soil the numerical instability occurs in some cases. It is difficult to detach this numerical instability from the natural physical instability of bed.

    This paper analyses the causes of numerical instability occurring while modeling evolution of complex shape bed by using the Exner equation and phenomenological sediment rate models. The paper shows that two kinds of indeterminateness may occur while solving numerically the Exner equation closed by phenomenological model of sediment transport. The first indeterminateness occurs in the bed area where sediment transport is transit and bed is not changed. The second indeterminateness occurs at the extreme point of bed profile when the sediment rate varies and the bed remains the same. Authors performed the closure of the Exner equation by the analytical sediment transport model, which allowed to transform the Exner equation to parabolic type equation. Analysis of the obtained equation showed that it’s numerical solving does not lead to occurring of the indeterminateness mentioned above. Parabolic form of the transformed Exner equation allows to apply the effective and stable implicit central difference scheme for this equation solving.

    The model problem of bed evolution in presence of periodic distribution of the bed shear stress is carried out. The authors used the explicit central difference scheme with and without filtration method application and implicit central difference scheme for numerical solution of the problem. It is shown that the explicit central difference scheme is unstable in the area of the bed profile extremum. Using the filtration method resulted to increased dissipation of the solution. The solution obtained by using the implicit central difference scheme corresponds to the distribution law of bed shear stress and is stable throughout the calculation area.

    Views (last year): 10.
  2. Бештоков М.Х.
    Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373

    В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.

    Beshtokov M.K.
    Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373

    The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.

  3. На основе метода расщепления для нестационарного уравнения Шредингера предложена разностная схема численного решения нестационарной системы двух уравнений Шредингера с оператором спин-орбитального взаимодействия для двухкомпонентной спинорной волновой функции. Выполнено компьютерное моделирование эволюции волновых функций внешних нейтронов с различными проекциями полного момента на межъядерную ось и вероятности их передачи при лобовых столкновениях ядер 18O и 58Ni.

    Samarin K.V.
    Mathematical modeling of neutron transfers in nuclear reactions considering spin-orbit interaction
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 393-401

    The difference scheme for numerical solution of a time-dependant system of two Schrödinger equations with the operator of a spin-orbit interaction for a two-component spinor wave function is offered on the basis of a split method for a time-dependant Schrödinger equations. The computer simulation of the external neutrons’ wave functions evolution with different values of the full moment projection upon internuclear axis and probabilities of their transfer are executed for head-on collisions of 18O and 58Ni nuclei.

    Views (last year): 4.
  4. Турченков Д.А., Турченков М.А.
    Aнализ упрощения разностных схем для уравнения Ланжевена, влияние учета корреляции приращений
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 325-338

    Исследованы пути упрощения разностных схем интегрирования уравнения Ланжевена варьированием коэффициента корреляции приращений. Для семейства численных методов получено общее аналитическое выражение для координаты и скорости. Показано, что асимптотическое значение среднего квадрата скорости для ряда разностных схем зависит от размера шага. Оценивается область применимости численных методов, а также соотношение между порядками сходимости. Выявлено, что без точного учета скоррелированности приращений разностная схема, построенная на точном решении, имеет ошибку, сравнимую с методами первого порядка.

    Turchenkov D.A., Turchenkov M.A.
    Analysis of simplifications of numerical schemes for Langevin equation, effect of variations in the correlation of augmentations
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 325-338

    The possibility to simplify the integration of Langevin equation using the variation of correlation between augmentation was researched. The analytical expression for a set of numerical schemes is presented. It’s shown that asymptotic limits for squared velocity depend on step size. The region of convergence and the convergence orders were estimated. It turned out that the incorrect correlation between increments decrease the accuracy down to the level of first-order methods for schemes based on precise solution.

    Views (last year): 5. Citations: 4 (RSCI).
  5. Шокиров Ф.Ш.
    Взаимодействие бризера с доменной стенкой в двумерной О(3) нелинейной сигма-модели
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 773-787

    Методами численного моделирования проведено исследование процессов взаимодействия осциллирующего солитона (бризера) с 180-градусной доменной стенкой нееловского типа в рамках (2 + 1)-мерной суперсимметричной О(3) нелинейной сигма-модели. Целью настоящей работы является исследование нелинейной эволюции и устойчивости системы взаимодействующих локализованных динамических и топологических решений. Для построения моделей взаимодействия были использованы стационарные бризерные решения и решения в виде доменных стенок, полученные в рамках двумерного уравнения синус-Гордона добавлением специально подобранных возмущений вектору А3-поля в изотопическом пространстве блоховской сферы. При отсутствии внешнего магнитного поля нелинейные сигма-модели обладают формальной лоренц-инвариантностью, которая позволяет построить, в частности, движущиеся решения и провести полный анализ экспериментальных данных нелинейной динамики системы взаимодействующих солитонов. В настоящей работе на основе полученных движущихся локализованных решений построены модели налетающих и лобовых столкновений бризеров с доменной стенкой, где, в зависимости от динамических параметров системы, наблюдаются процессы столкновения и отражения солитонов друг от друга, дальнодействующие взаимодействия, а также распад осциллирующего солитона на линейные волны возмущений. В отличие от бризерного решения, обладающего динамикой внутренней степени свободы, интеграл энергии топологически устойчивого солитона во всех проведенных экспериментах сохраняется с высокой точностью. Для каждого типа взаимодействия определен интервал значений скорости движения сталкивающихся динамических и топологических солитонов в зависимости от частоты вращения вектора А3-поля в изотопическом пространстве. Численные модели построены на основе методов теории конечных разностных схем, использованием свойств стереографической проекции, с учетом теоретико-групповых особенностей конструкций класса O(N) нелинейных сигма-моделей теории поля. По периметру двумерной области моделирования установлены специально разработанные граничные условия, которые поглощают линейные волны возмущений, излучаемые взаимодействующими солитонными полями. Таким образом, осуществлено моделирование процессов взаимодействия локализованных решений в бесконечном двумерном фазовом пространстве. Разработан программный модуль, позволяющий провести комплексный анализ эволюции взаимодействующих решений нелинейных сигма-моделей теории поля, с учетом ее групповых особенностей в двумерном псевдоевклидовом пространстве. Проведен анализ изоспиновой динамики, а также плотности и интеграла энергии системы взаимодействующих динамических и топологических солитонов.

    Shokirov F.S.
    Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787

    By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.

    Views (last year): 6.
  6. Статья посвящена численному исследованию ударно-волновых течений в неоднородных средах — газовзвесях. В данной работе применяется двухскоростная двухтемпературная модель, в которой дисперсная компонента смеси имеет свою скорость и температуру. Для описания изменения концентрации дисперсной компоненты решается уравнение сохранения «средней плотности». В данном исследовании учитывались межфазное тепловое взаимодействие и межфазный обмен импульсом. Математическая модель позволяет описывать несущею фазу смеси как вязкую, сжимаемою и теплопроводную среду. Система уравнений решалась с помощью явного конечно-разностного метода Мак-Кормака второго порядка точности. Для получения монотонного численного решения к сеточной функции применялась схема нелинейной коррекции. В задаче ударно-волнового течения для составляющих скорости задавались однородные граничные условия Дирихле, для остальных искомых функций задавались граничные условия Неймана. В численных расчетах для того, чтобы выявить зависимость динамики всей смеси от свойств твердой компоненты, рассматривались различные параметры дисперсной фазы — объемное содержание, а также линейный размер дисперсных включений. Целью исследований было определить, каким образом свойства твердых включений влияют на параметры динамики несущей среды — газа. Исследовалось движение неоднородной среды в ударной трубе — канале, разделенном на две части; давление газа в одном из отсеков канала имело большее значение, чем в другом. В статье моделировались движение прямого скачка уплотнения из камеры высокого давления в камеру низкого давления, заполненную запыленной средой, последующее отражение ударной волны от твердой поверхности. Анализ численных расчетов показал, что уменьшение линейного размера частиц газовзвеси и увеличение физической плотности материала, из которого состоят частицы, приводят к формированию более интенсивной отраженной ударной волны с большей температурой и плотностью газа, а также меньшей скоростью движения отраженного возмущения и меньшей скоростью спутного потока газа в отраженной волне.

    Tukmakov D.A.
    Numerical study of intense shock waves in dusty media with a homogeneous and two-component carrier phase
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 141-154

    The article is devoted to the numerical study of shock-wave flows in inhomogeneous media–gas mixtures. In this work, a two-speed two-temperature model is used, in which the dispersed component of the mixture has its own speed and temperature. To describe the change in the concentration of the dispersed component, the equation of conservation of “average density” is solved. This study took into account interphase thermal interaction and interphase pulse exchange. The mathematical model allows the carrier component of the mixture to be described as a viscous, compressible and heat-conducting medium. The system of equations was solved using the explicit Mac-Cormack second-order finite-difference method. To obtain a monotone numerical solution, a nonlinear correction scheme was applied to the grid function. In the problem of shock-wave flow, the Dirichlet boundary conditions were specified for the velocity components, and the Neumann boundary conditions were specified for the other unknown functions. In numerical calculations, in order to reveal the dependence of the dynamics of the entire mixture on the properties of the solid component, various parameters of the dispersed phase were considered — the volume content as well as the linear size of the dispersed inclusions. The goal of the research was to determine how the properties of solid inclusions affect the parameters of the dynamics of the carrier medium — gas. The motion of an inhomogeneous medium in a shock duct divided into two parts was studied, the gas pressure in one of the channel compartments is more important than in the other. The article simulated the movement of a direct shock wave from a high-pressure chamber to a low–pressure chamber filled with a dusty medium and the subsequent reflection of a shock wave from a solid surface. An analysis of numerical calculations showed that a decrease in the linear particle size of the gas suspension and an increase in the physical density of the material from which the particles are composed leads to the formation of a more intense reflected shock wave with a higher temperature and gas density, as well as a lower speed of movement of the reflected disturbance reflected wave.

  7. Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.

    Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.

    Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).

    The article deals with the nonlinear boundary-value problem of hydrogen permeability corresponding to the following experiment. A membrane made of the target structural material heated to a sufficiently high temperature serves as the partition in the vacuum chamber. Degassing is performed in advance. A constant pressure of gaseous (molecular) hydrogen is built up at the inlet side. The penetrating flux is determined by mass-spectrometry in the vacuum maintained at the outlet side.

    A linear model of dependence on concentration is adopted for the coefficient of dissolved atomic hydrogen diffusion in the bulk. The temperature dependence conforms to the Arrhenius law. The surface processes of dissolution and sorptiondesorption are taken into account in the form of nonlinear dynamic boundary conditions (differential equations for the dynamics of surface concentrations of atomic hydrogen). The characteristic mathematical feature of the boundary-value problem is that concentration time derivatives are included both in the diffusion equation and in the boundary conditions with quadratic nonlinearity. In terms of the general theory of functional differential equations, this leads to the so-called neutral type equations and requires a more complex mathematical apparatus. An iterative computational algorithm of second-(higher- )order accuracy is suggested for solving the corresponding nonlinear boundary-value problem based on explicit-implicit difference schemes. To avoid solving the nonlinear system of equations at every time step, we apply the explicit component of difference scheme to slower sub-processes.

    The results of numerical modeling are presented to confirm the fitness of the model to experimental data. The degrees of impact of variations in hydrogen permeability parameters (“derivatives”) on the penetrating flux and the concentration distribution of H atoms through the sample thickness are determined. This knowledge is important, in particular, when designing protective structures against hydrogen embrittlement or membrane technologies for producing high-purity hydrogen. The computational algorithm enables using the model in the analysis of extreme regimes for structural materials (pressure drops, high temperatures, unsteady heating), identifying the limiting factors under specific operating conditions, and saving on costly experiments (especially in deuterium-tritium investigations).

  8. Разработана двумерная математическая модель для оценки напряжений в сварных соединениях, формируемых при многопроходной сварке многослойных сталей. Основой модели является система уравнений, которая включает вариационное уравнение Лагранжа инкрементальной теории пластичности и вариационное уравнение теплопроводности, выражающее принцип М. Био. Вариационно-разностным методом решается задача теплопроводности для расчета нестационарного температурного поля, а затем на каждом шаге по времени – квазистатическая задача термопластичности. Разностная схема построена на треугольных сетках, что дает некоторое повышение точности при описании положения границ раздела структурных элементов.

    Krektuleva R.A., Cherepanov O.I., Cherepanov R.O.
    Numerical solution of a two-dimensional quasi-static problem of thermoplasticity: residual thermal stress calculation for a multipass welding of heterogeneous steels
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 345-356

    A two-dimensional mathematical model was developed for estimating the stresses in welded joints formed during multipass welding of multilayer steels. The basis of the model is the system of equations that includes the Lagrange variational equation of incremental plasticity theory and the variational equation of heat conduction, which expresses the principle of M. Biot. Variational-difference method was used to solve the problems of heat conductivity and calculation of the transient temperature field, and then at each time step – for the quasi-static problem of thermoplasticity. The numerical scheme is based on triangular meshes, which gives a more accuracy in describing the boundaries of structural elements as compared to rectangular grids.

    Views (last year): 4. Citations: 6 (RSCI).
  9. Кетова К.В., Романовский Ю.М., Русяк И.Г.
    Математическое моделирование динамики человеческого капитала
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342

    В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.

    В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.

    Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.

    Ketova K.V., Romanovsky Y.M., Rusyak I.G.
    Mathematical modeling of the human capital dynamic
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342

    In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.

    This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.

    The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.

    Views (last year): 34.
  10. Кащенко Н.М., Ишанов С.А., Зубков Е.В.
    Численная модель переноса в задачах неустойчивостей низкоширотной ионосферы Земли с использованием двумерной монотонизированной Z-схемы
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1011-1023

    Целью работы является исследование монотонной конечно-разностной схемы второго порядка точности, созданной на основе обобщения одномерной Z-схемы. Исследование проведено для модельных уравнений переноса несжимаемой среды. В работе описано двумерное обобщение Z-схемы с нелинейной коррекцией, использующей вместо потоков косые разности, содержащие значения из разных временных слоев. Численно проверена монотонность полученной нелинейной схемы для функций-ограничителей двух видов, как для гладких решений, так и для негладких, и получены численные оценки порядка точности построенной схемы. Построенная схема является абсолютно устойчивой, но теряет свойство монотонности при превышении шага Куранта. Отличительной особенностью предложенной конечно-разностной схемы является минимальность ее шаблона.

    Построенная численная схема предназначена для моделей плазменных неустойчивостей различных масштабов в низкоширотной ионосферной плазме Земли. Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере в условиях возникновения неустойчивости Рэлея – Тейлора и плазменных структур с меньшими масштабами, механизмами генерации которых являются неустойчивости других типов, что приводит к явлению F-рассеяния. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направле- нии предполагается выполнение условия несжимаемости плазмы.

    Kashchenko N.M., Ishanov S.A., Zubkov E.V.
    Numerical model of transport in problems of instabilities of the Earth’s low-latitude ionosphere using a two-dimensional monotonized Z-scheme
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1011-1023

    The aim of the work is to study a monotone finite-difference scheme of the second order of accuracy, created on the basis of a generalization of the one-dimensional Z-scheme. The study was carried out for model equations of the transfer of an incompressible medium. The paper describes a two-dimensional generalization of the Z-scheme with nonlinear correction, using instead of streams oblique differences containing values from different time layers. The monotonicity of the obtained nonlinear scheme is verified numerically for the limit functions of two types, both for smooth solutions and for nonsmooth solutions, and numerical estimates of the order of accuracy of the constructed scheme are obtained.

    The constructed scheme is absolutely stable, but it loses the property of monotony when the Courant step is exceeded. A distinctive feature of the proposed finite-difference scheme is the minimality of its template. The constructed numerical scheme is intended for models of plasma instabilities of various scales in the low-latitude ionospheric plasma of the Earth. One of the real problems in the solution of which such equations arise is the numerical simulation of highly nonstationary medium-scale processes in the earth’s ionosphere under conditions of the appearance of the Rayleigh – Taylor instability and plasma structures with smaller scales, the generation mechanisms of which are instabilities of other types, which leads to the phenomenon F-scattering. Due to the fact that the transfer processes in the ionospheric plasma are controlled by the magnetic field, it is assumed that the plasma incompressibility condition is fulfilled in the direction transverse to the magnetic field.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"