Результаты поиска по 'робастные методы':
Найдено статей: 6
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 163-164
    Views (last year): 6.
  2. Веренцов С.И., Магеррамов Э.А., Виноградов В.А., Гизатуллин Р.И., Алексеенко А.Е., Холодов Я.А.
    Байесовская вероятностная локализация автономного транспортного средства путем ассимиляции сенсорных данных и информации о дорожных знаках
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 295-303

    Локализация транспортного средства является важной задачей в области интеллектуальных транспортных систем. Хорошо известно, что слияние показаний с разных датчиков (англ. Sensor Fusion) позволяет создавать более робастные и точные навигационные системы для автономных транспортных средств. Стандартные подходы, такие как расширенный фильтр Калмана или многочастичный фильтр, либо неэффективны при работе с сильно нелинейными данными, либо потребляют значительные вычислительные ресурсы, что осложняет их использование во встроенных системах. При этом точность сливаемых сенсоров может сильно различаться. Значительный прирост точности, особенно в ситуации, когда GPS (англ. Global Positioning System) не доступен, может дать использование ориентиров, положение которых заранее известно, — таких как дорожные знаки, светофоры, или признаки SLAM (англ. Simultaneous Localization and Mapping). Однако такой подход может быть неприменим в случае, если априорные локации неизвестны или неточны. Мы предлагаем новый подход для уточнения координат транспортного средства с использованием визуальных ориентиров, таких как дорожные знаки. Наша система представляет собой байесовский фреймворк, уточняющий позицию автомобиля с использованием внешних данных о прошлых наблюдениях дорожных знаков, собранных методом краудсорсинга (англ. Crowdsourcing — сбор данных широким кругом лиц). Данная статья представляет также подход к комбинированию траекторий, полученных с помощью глобальных GPS-координат и локальных координат, полученных с помощью акселерометра и гироскопа (англ. Inertial Measurement Unit, IMU), для создания траектории движения транспортного средства в неизвестной среде. Дополнительно мы собрали новый набор данных, включающий в себя 4 проезда на автомобиле в городской среде по одному маршруту, при которых записывались данные GPS и IMU смартфона, видеопоток с камеры, установленной на лобовом стекле, а также высокоточные данные о положении с использованием специализированного устройства Real Time Kinematic Global Navigation Satellite System (RTK-GNSS), которые могут быть использованы для валидации. Помимо этого, с использованием той же системы RTK-GNSS были записаны точные координаты знаков, присутствующих на маршруте. Результаты экспериментов показывают, что байесовский подход позволяет корректировать траекторию движения транспортного средства и дает более точные оценки при увеличении количества известной заранее информации. Предложенный метод эффективен и требует для своей работы, кроме показаний GPS/IMU, только информацию о положении автомобилей в моменты прошлых наблюдений дорожных знаков.

    Verentsov S.I., Magerramov E.A., Vinogradov V.A., Gizatullin R.I., Alekseenko A.E., Kholodov Y.A.
    Bayesian localization for autonomous vehicle using sensor fusion and traffic signs
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 295-303

    The localization of a vehicle is an important task in the field of intelligent transportation systems. It is well known that sensor fusion helps to create more robust and accurate systems for autonomous vehicles. Standard approaches, like extended Kalman Filter or Particle Filter, are inefficient in case of highly non-linear data or have high computational cost, which complicates using them in embedded systems. Significant increase of precision, especially in case when GPS (Global Positioning System) is unavailable, may be achieved by using landmarks with known location — such as traffic signs, traffic lights, or SLAM (Simultaneous Localization and Mapping) features. However, this approach may be inapplicable if a priori locations are unknown or not accurate enough. We suggest a new approach for refining coordinates of a vehicle by using landmarks, such as traffic signs. Core part of the suggested system is the Bayesian framework, which refines vehicle location using external data about the previous traffic signs detections, collected with crowdsourcing. This paper presents an approach that combines trajectories built using global coordinates from GPS and relative coordinates from Inertial Measurement Unit (IMU) to produce a vehicle's trajectory in an unknown environment. In addition, we collected a new dataset, including from smartphone GPS and IMU sensors, video feed from windshield camera, which were recorded during 4 car rides on the same route. Also, we collected precise location data from Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) device, which can be used for validation. This RTK-GNSS system was used to collect precise data about the traffic signs locations on the route as well. The results show that the Bayesian approach helps with the trajectory correction and gives better estimations with the increase of the amount of the prior information. The suggested method is efficient and requires, apart from the GPS/IMU measurements, only information about the vehicle locations during previous traffic signs detections.

    Views (last year): 22.
  3. Алкуса М.С., Гасников А.В., Двуреченский П.Е., Садиев А.А., Разук Л.Я.
    Подход к решению невыпуклой равномерно вогнутой седловой задачи со структурой
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 225-237

    В последнее время седловым задачам уделяется большое внимание благодаря их мощным возможностям моделирования для множества задач из различных областей. Приложения этих задач встречаются в многочисленных современных прикладных областях, таких как робастная оптимизация, распределенная оптимизация, теория игр и~приложения машинного обучения, такие как, например, минимизация эмпирического риска или обучение генеративно-состязательных сетей. Поэтому многие исследователи активно работают над разработкой численных методов для решения седловых задач в самых разных предположениях. Данная статья посвящена разработке численного метода решения седловых задач в невыпуклой равномерно вогнутой постановке. В этой постановке считается, что по группе прямых переменных целевая функция может быть невыпуклой, а по группе двойственных переменных задача является равномерно вогнутой (это понятие обобщает понятие сильной вогнутости). Был изучен более общий класс седловых задач со сложной композитной структурой и гёльдерово непрерывными производными высшего порядка. Для решения рассматриваемой задачи был предложен подход, при котором мы сводим задачу к комбинации двух вспомогательных оптимизационных задач отдельно для каждой группы переменных: внешней задачи минимизации и~внутренней задачи максимизации. Для решения внешней задачи минимизации мы используем адаптивный градиентный метод, который применим для невыпуклых задач, а также работает с неточным оракулом, который генерируется путем неточного решения внутренней задачи максимизации. Для решения внутренней задачи максимизации мы используем обобщенный ускоренный метод с рестартами, который представляет собой метод, объединяющий методы ускорения высокого порядка для минимизации выпуклой функции, имеющей гёльдерово непрерывные производные высшего порядка. Важной компонентой проведенного анализа сложности предлагаемого алгоритма является разделение оракульных сложностей на число вызовов оракула первого порядка для внешней задачи минимизации и оракула более высокого порядка для внутренней задачи максимизации. Более того, оценивается сложность всего предлагаемого подхода.

    Alkousa M.S., Gasnikov A.V., Dvurechensky P.E., Sadiev A.A., Razouk L.Ya.
    An approach for the nonconvex uniformly concave structured saddle point problem
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237

    Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.

  4. Варшавский Л.Е.
    Моделирование динамики экономических систем с неопределенными параметрами
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 261-276

    В статье проводится краткий анализ разработанных робастных методов управления, а также исследование практических аспектов их использования для управления экономическими системами с неопределенными параметрами. Рассматриваются особенности использования разработанных методов управления системами при наличии структурированной неопределенности применительно к задачам стабилизации цены на мировом рынке нефти, а также инфляции в макроэкономических системах. В первом случае с использованием специально разработанной модели ставится задача определения такого управления, которое обеспечивает минимальное отклонение цены нефти от желаемого уровня. Во втором случае решается задача формирования стабилизирующего управления, обеспечивающего в среднесрочной перспективе минимальное отклонение инфляции от желаемого уровня (на основе агрегированной макроэкономической модели среднесрочного развития США).

    В результате вычислительных экспериментов найдены предельные уровни неопределенности параметров и законы обратной связи, при которых используемый в работе подход обеспечивает стабилизируемость реальных экономических систем. Проведенные расчеты показывают, что полученные оценки предельных уровней неопределенности параметров являются достаточно консервативными. С помощью метода статистических испытаний исследуется динамика цены на нефть, а также показателя инфляции в условиях найденных предельных уровней неопределенности параметров при использовании рассчитанных робастных законов управления, в случае наихудшего и наилучшего сценариев. Полученные результаты показывают, что рассчитанные робастные законы управления могут быть успешно применены и при большей степени неопределенности параметров исследуемых моделей, чем гарантируется при найденных предельных уровнях неопределенности.

    Varshavsky L.E.
    Uncertainty factor in modeling dynamics of economic systems
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 261-276

    Analysis and practical aspects of implementing developed in the control theory robust control methods in studying economic systems is carried out. The main emphasis is placed on studying results obtained for dynamical systems with structured uncertainty. Practical aspects of implementing such results in control of economic systems on the basis of dynamical models with uncertain parameters and perturbations (stabilization of price on the oil market and inflation in macroeconomic systems) are discussed. With the help of specially constructed aggregate model of oil price dynamics studied the problem of finding control which provides minimal deviation of price from desired levels over middle range period. The second real problem considered in the article consists in determination of stabilizing control providing minimal deviation of inflation from desired levels (on the basis of constructed aggregate macroeconomic model of the USA over middle range period).

    Upper levels of parameters uncertainty and control laws guaranteeing stabilizability of the real considered economic systems have been found using the robust method of control with structured uncertainty. At the same time we have come to the conclusion that received estimates of parameters uncertainty upper levels are conservative. Monte-Carlo experiments carried out for the article made it possible to analyze dynamics of oil price and inflation under received limit levels of models parameters uncertainty and under implementing found robust control laws for the worst and the best scenarios. Results of these experiments show that received robust control laws may be successfully used under less stringent uncertainty constraints than it is guaranteed by sufficient conditions of stabilization.

    Views (last year): 39.
  5. Работа посвящена анализу медико-биологических данных, получаемых с помощью локомоторных тренировок и тестирований космонавтов, проводимых как на Земле, так и во время полета. Данные эксперименты можно описать как движение космонавта по беговой дорожке согласно прописанному регламенту в различных скоростных режимах, во время которых не только записывается скорость, но и собирается ряд показателей, включающих частоту сердечных сокращений, величину давления на опору и пр. С целью анализа динамики состояния космонавта на протяжении длительного времени, для независимой оценки целевых показателей необходимо проводить качественную сегментацию режимов его движения. Особую актуальность данная задача приобретает при разработке автономной системы жизнеобеспечения космонавтов, которая будет действовать без сопровождения персонала с Земли. При сегментации целевых данных сложность заключается в наличии различных аномалий, включая отход испытуемого от заранее прописанного регламента, переходы между режимами движения произвольного вида и длительности, аппаратные сбои и пр. Статья включает в себя подробный обзор ряда современных ретроспективных (оффлайн) непараметрических методов поиска многократных разладок во временном ряде, где под разладкой понимается резкое изменение свойств наблюдаемого ряда, происходящее в неизвестный заранее момент времени. Особое внимание уделено алгоритмам и статистическим показателям, которые определяют степень однородности данных, а также способам поиска точек разладки. В данной работе рассматриваются подходы, основанные на методах динамического программирования и скользящего окна. Вторая часть статьи посвящена численному моделированию представленных методов на характерных примерах экспериментальных данных, включающих как простые, так и сложные скоростные профили движения. Проведенный анализ позволил выделить методы, которые в дальнейшем будут проанализированы на полном корпусе данных. Предпочтение отдается методам, обеспечивающим близость разметки к заданному эталону, потенциально позволяющим детектировать обе границы переходных процессов, а также обладающим робастностью относительно внутренних параметров.

    Shestoperov A.I., Ivchenko A.V., Fomina E.V.
    Changepoint detection in biometric data: retrospective nonparametric segmentation methods based on dynamic programming and sliding windows
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1295-1321

    This paper is dedicated to the analysis of medical and biological data obtained through locomotor training and testing of astronauts conducted both on Earth and during spaceflight. These experiments can be described as the astronaut’s movement on a treadmill according to a predefined regimen in various speed modes. During these modes, not only the speed is recorded but also a range of parameters, including heart rate, ground reaction force, and others, are collected. In order to analyze the dynamics of the astronaut’s condition over an extended period, it is necessary to perform a qualitative segmentation of their movement modes to independently assess the target metrics. This task becomes particularly relevant in the development of an autonomous life support system for astronauts that operates without direct supervision from Earth. The segmentation of target data is complicated by the presence of various anomalies, such as deviations from the predefined regimen, arbitrary and varying duration of mode transitions, hardware failures, and other factors. The paper includes a detailed review of several contemporary retrospective (offline) nonparametric methods for detecting multiple changepoints, which refer to sudden changes in the properties of the observed time series occurring at unknown moments. Special attention is given to algorithms and statistical measures that determine the homogeneity of the data and methods for detecting change points. The paper considers approaches based on dynamic programming and sliding window methods. The second part of the paper focuses on the numerical modeling of these methods using characteristic examples of experimental data, including both “simple” and “complex” speed profiles of movement. The analysis conducted allowed us to identify the preferred methods, which will be further evaluated on the complete dataset. Preference is given to methods that ensure the closeness of the markup to a reference one, potentially allow the detection of both boundaries of transient processes, as well as are robust relative to internal parameters.

  6. Сокрытие информации в цифровых изображениях является перспективным направлением кибербезопасности. Методы стеганографии обеспечивают незаметную передачу данных по открытому каналу связи втайне от злоумышленника. Эффективность встраивания информации зависит от того, насколько незаметным и робастным является скрытое вложение, а также от емкости встраивания. Однако показатели качества встраивания являются взаимно обратными и улучшение значения одного из них обычно приводит к ухудшению остальных. Баланс между ними может быть достигнут с помощью применения метаэвристической оптимизации. Метаэвристики позволяют находить оптимальные или близкие к ним решения для многих задач, в том числе трудно формализуемых, моделируя разные природные процессы, например эволюцию видов или поведение животных. В этой статье предлагается новый подход к сокрытию данных в гибридном пространственно-частотном домене цифровых изображений на основе метаэвристической оптимизации. В качестве операции встраивания выбрано изменение блока пикселей изображения в соответствии с некоторой матрицей изменений. Матрица изменений выбирается адаптивно для каждого блока с помощью алгоритмов метаэвристической оптимизации. В работе сравнивается эффективность трех метаэвристик, таких как генетический алгоритм (ГА), оптимизация роя частиц (ОРЧ) и дифференциальная эволюция (ДЭ), для поиска лучшей матрицы изменений. Результаты экспериментов показывают, что новый подход обеспечивает высокую незаметность встраивания, высокую емкость и безошибочное извлечение встроенной информации. При этом хранение и передача матриц изменений для каждого блока не требуются для извлечения данных, что уменьшает вероятность обнаружения скрытого вложения злоумышленником. Метаэвристики обеспечили прирост показателей незаметности и емкости по сравнению с предшествующим алгоритмом встраивания данных в коэффициенты дискретного косинусного преобразования по методу QIM [Evsutin, Melman, Meshcheryakov, 2021] соответственно на 26,02% и 30,18% для ГА, на 26,01% и 19,39% для ОРЧ, на 27,30% и 28,73% для ДЭ.

    Melman A.S., Evsutin O.O.
    Efficient and error-free information hiding in the hybrid domain of digital images using metaheuristic optimization
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 197-210

    Data hiding in digital images is a promising direction of cybersecurity. Digital steganography methods provide imperceptible transmission of secret data over an open communication channel. The information embedding efficiency depends on the embedding imperceptibility, capacity, and robustness. These quality criteria are mutually inverse, and the improvement of one indicator usually leads to the deterioration of the others. A balance between them can be achieved using metaheuristic optimization. Metaheuristics are a class of optimization algorithms that find an optimal, or close to an optimal solution for a variety of problems, including those that are difficult to formalize, by simulating various natural processes, for example, the evolution of species or the behavior of animals. In this study, we propose an approach to data hiding in the hybrid spatial-frequency domain of digital images based on metaheuristic optimization. Changing a block of image pixels according to some change matrix is considered as an embedding operation. We select the change matrix adaptively for each block using metaheuristic optimization algorithms. In this study, we compare the performance of three metaheuristics such as genetic algorithm, particle swarm optimization, and differential evolution to find the best change matrix. Experimental results showed that the proposed approach provides high imperceptibility of embedding, high capacity, and error-free extraction of embedded information. At the same time, storage of change matrices for each block is not required for further data extraction. This improves user experience and reduces the chance of an attacker discovering the steganographic attachment. Metaheuristics provided an increase in imperceptibility indicator, estimated by the PSNR metric, and the capacity of the previous algorithm for embedding information into the coefficients of the discrete cosine transform using the QIM method [Evsutin, Melman, Meshcheryakov, 2021] by 26.02% and 30.18%, respectively, for the genetic algorithm, 26.01% and 19.39% for particle swarm optimization, 27.30% and 28.73% for differential evolution.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"